These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 4059555

  • 1. Hydrogen MR imaging of the head at 0.35 T and 0.7 T: effects of magnetic field strength.
    Posin JP, Arakawa M, Crooks LE, Feinberg DA, Hoenninger JC, Watts JC, Mills CM, Kaufman L.
    Radiology; 1985 Dec; 157(3):679-83. PubMed ID: 4059555
    [Abstract] [Full Text] [Related]

  • 2. MR imaging of the brain: comparison of gradient-echo and spin-echo pulse sequences.
    Pui MH, Fok EC.
    AJR Am J Roentgenol; 1995 Oct; 165(4):959-62. PubMed ID: 7677001
    [Abstract] [Full Text] [Related]

  • 3. [Field and temperature dependence of contrast in magnetic resonance imaging].
    Rinck PA, Muller RN, Fischer H.
    Rofo; 1987 Aug; 147(2):200-6. PubMed ID: 2819980
    [Abstract] [Full Text] [Related]

  • 4. Intracranial chemical-shift artifacts on MR images of the brain: observations and relation to sampling bandwidth.
    Smith AS, Weinstein MA, Hurst GC, DeRemer DR, Cole RA, Duchesneau PM.
    AJR Am J Roentgenol; 1990 Jun; 154(6):1275-83. PubMed ID: 2110742
    [Abstract] [Full Text] [Related]

  • 5. Magnetic resonance imaging: effects of magnetic field strength.
    Crooks LE, Arakawa M, Hoenninger J, McCarten B, Watts J, Kaufman L.
    Radiology; 1984 Apr; 151(1):127-33. PubMed ID: 6701302
    [Abstract] [Full Text] [Related]

  • 6. 3.0-T functional brain imaging: a 5-year experience.
    Scarabino T, Giannatempo GM, Popolizio T, Tosetti M, d'Alesio V, Esposito F, Di Salle F, Di Costanzo A, Bertolino A, Maggialetti A, Salvolini U.
    Radiol Med; 2007 Feb; 112(1):97-112. PubMed ID: 17310287
    [Abstract] [Full Text] [Related]

  • 7. Field-cycling relaxometry: medical applications.
    Rinck PA, Fischer HW, Vander Elst L, Van Haverbeke Y, Muller RN.
    Radiology; 1988 Sep; 168(3):843-9. PubMed ID: 3406414
    [Abstract] [Full Text] [Related]

  • 8. MR imaging of epilepsy: state of the art at 1.5 T and potential of 3 T.
    Briellmann RS, Pell GS, Wellard RM, Mitchell LA, Abbott DF, Jackson GD.
    Epileptic Disord; 2003 Mar; 5(1):3-20. PubMed ID: 12773291
    [Abstract] [Full Text] [Related]

  • 9. MR spectroscopy and spectroscopic imaging: comparing 3.0 T versus 1.5 T.
    Dydak U, Schär M.
    Neuroimaging Clin N Am; 2006 May; 16(2):269-83, x. PubMed ID: 16731366
    [Abstract] [Full Text] [Related]

  • 10. Nuclear magnetic resonance imaging: contrast-to-noise ratio as a function of strength of magnetic field.
    Hart HR, Bottomley PA, Edelstein WA, Karr SG, Leue WM, Mueller O, Redington RW, Schenck JF, Smith LS, Vatis D.
    AJR Am J Roentgenol; 1983 Dec; 141(6):1195-201. PubMed ID: 6606316
    [Abstract] [Full Text] [Related]

  • 11. Fast multiplanar spoiled gradient-recalled imaging of the liver: pulse sequence optimization and comparison with spin-echo MR imaging.
    Low RN, Francis IR, Herfkens RJ, Jeffrey RB, Glazer GM, Foo TK, Shimakawa A, Pelc NJ.
    AJR Am J Roentgenol; 1993 Mar; 160(3):501-9. PubMed ID: 8381572
    [Abstract] [Full Text] [Related]

  • 12. Usefulness of optimized gadolinium-enhanced fast fluid-attenuated inversion recovery MR imaging in revealing lesions of the brain.
    Melhem ER, Bert RJ, Walker RE.
    AJR Am J Roentgenol; 1998 Sep; 171(3):803-7. PubMed ID: 9725320
    [Abstract] [Full Text] [Related]

  • 13. Reduced-bandwidth MR imaging of the head at 1.5 T1.
    Simon JH, Foster TH, Ketonen L, Totterman S, Szumowski J, Kido DK, Manzione JV, Joy SE.
    Radiology; 1989 Sep; 172(3):771-5. PubMed ID: 2772187
    [Abstract] [Full Text] [Related]

  • 14. Contrast-enhanced T1-weighted fluid-attenuated inversion-recovery BLADE magnetic resonance imaging of the brain: an alternative to spin-echo technique for detection of brain lesions in the unsedated pediatric patient?
    Alibek S, Adamietz B, Cavallaro A, Stemmer A, Anders K, Kramer M, Bautz W, Staatz G.
    Acad Radiol; 2008 Aug; 15(8):986-95. PubMed ID: 18620119
    [Abstract] [Full Text] [Related]

  • 15. Theoretical signal-to-noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs.
    Parra-Robles J, Cross AR, Santyr GE.
    Med Phys; 2005 Jan; 32(1):221-9. PubMed ID: 15719973
    [Abstract] [Full Text] [Related]

  • 16. Improved contrast of enhancing brain lesions using contrast-enhanced T1-weighted fast spin-echo MR imaging.
    Melhem ER, Guidone PL, Jara H, Yucel EK.
    AJR Am J Roentgenol; 1997 Apr; 168(4):1091-5. PubMed ID: 9124121
    [Abstract] [Full Text] [Related]

  • 17. MR imaging contrast in human brain tissue: assessment and optimization at 4 T.
    Duewell S, Wolff SD, Wen H, Balaban RS, Jezzard P.
    Radiology; 1996 Jun; 199(3):780-6. PubMed ID: 8638005
    [Abstract] [Full Text] [Related]

  • 18. Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose.
    Manka C, Träber F, Gieseke J, Schild HH, Kuhl CK.
    Radiology; 2005 Mar; 234(3):869-77. PubMed ID: 15665227
    [Abstract] [Full Text] [Related]

  • 19. Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: Measured using BOLD contrast in the primary visual area.
    Okada T, Yamada H, Ito H, Yonekura Y, Sadato N.
    Acad Radiol; 2005 Feb; 12(2):142-7. PubMed ID: 15721590
    [Abstract] [Full Text] [Related]

  • 20. Variable magnetic resonance imaging parameters: effect on detection and characterization of lesions.
    Posin JP, Ortendahl DA, Hylton NM, Kaufman L, Watts JC, Crooks LE, Mills CM.
    Radiology; 1985 Jun; 155(3):719-25. PubMed ID: 4001375
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.