These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
95 related items for PubMed ID: 4063375
1. Structural features of the binding site of cholera toxin inferred from fluorescence measurements. De Wolf M, Van Dessel G, Lagrou A, Hilderson HJ, Dierick W. Biochim Biophys Acta; 1985 Nov 29; 832(2):165-74. PubMed ID: 4063375 [Abstract] [Full Text] [Related]
2. pH-induced transitions in cholera toxin conformation: a fluorescence study. De Wolf MJ, Van Dessel GA, Lagrou AR, Hilderson HJ, Dierick WS. Biochemistry; 1987 Jun 30; 26(13):3799-806. PubMed ID: 3651415 [Abstract] [Full Text] [Related]
3. Conformational changes in cholera toxin B subunit-ganglioside GM1 complexes are elicited by environmental pH and evoke changes in membrane structure. McCann JA, Mertz JA, Czworkowski J, Picking WD. Biochemistry; 1997 Jul 29; 36(30):9169-78. PubMed ID: 9230049 [Abstract] [Full Text] [Related]
4. Regeneration of active receptor recognition domains on the B subunit of cholera toxin by formation of hybrids from chemically inactivated derivatives. De Wolf MJ, Dierick WS. Biochim Biophys Acta; 1994 Sep 08; 1223(2):285-95. PubMed ID: 8086501 [Abstract] [Full Text] [Related]
5. Fluorescence analysis of the interaction between ganglioside GM1-containing phospholipid vesicles and the B subunit of cholera toxin. Picking WL, Moon H, Wu H, Picking WD. Biochim Biophys Acta; 1995 Feb 22; 1247(1):65-73. PubMed ID: 7873593 [Abstract] [Full Text] [Related]
6. A kinetic model of intermediate formation during assembly of cholera toxin B-subunit pentamers. Lesieur C, Cliff MJ, Carter R, James RF, Clarke AR, Hirst TR. J Biol Chem; 2002 May 10; 277(19):16697-704. PubMed ID: 11877421 [Abstract] [Full Text] [Related]
7. A pH-dependent conformational change in the B-subunit pentamer of Escherichia coli heat-labile enterotoxin: structural basis and possible functional role for a conserved feature of the AB5 toxin family. Ruddock LW, Webb HM, Ruston SP, Cheesman C, Freedman RB, Hirst TR. Biochemistry; 1996 Dec 17; 35(50):16069-76. PubMed ID: 8973177 [Abstract] [Full Text] [Related]
8. Specific binding of cholera toxin to rat erythrocytes revealed by analysis with a fluorescence-activated cell sorter. Iwamori M, Shimomura J, Nagai Y. J Biochem; 1985 Mar 17; 97(3):729-35. PubMed ID: 3926755 [Abstract] [Full Text] [Related]
9. Tryptophan fluorescence properties of cholera toxin upon interacting with ganglioside GD1b. Mestrallet MG, Bennun FR, Maggio B, Cumar FA. J Neurosci Res; 1984 Mar 17; 12(2-3):335-41. PubMed ID: 6502757 [Abstract] [Full Text] [Related]
10. Histidine-tryptophan interactions in T4 lysozyme: 'anomalous' pH dependence of fluorescence. Van Gilst M, Hudson BS. Biophys Chem; 1996 Dec 10; 63(1):17-25. PubMed ID: 8981748 [Abstract] [Full Text] [Related]
11. Structural features of luliberin (luteinising hormone-releasing factor) inferred from fluorescence measurements. Shinitzky M, Fridkin M. Biochim Biophys Acta; 1976 May 20; 434(1):137-43. PubMed ID: 7307 [Abstract] [Full Text] [Related]
12. Structure-function studies of cholera toxin and its A and B protomers. Modification of tryptophan residues. De Wolf MJ, Fridkin M, Epstein M, Kohn LD. J Biol Chem; 1981 Jun 10; 256(11):5481-8. PubMed ID: 6787042 [Abstract] [Full Text] [Related]
13. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins. Gonnelli M, Strambini GB. Photochem Photobiol; 2005 Jun 10; 81(3):614-22. PubMed ID: 15689181 [Abstract] [Full Text] [Related]
14. Transmembrane signaling by the B subunit of cholera toxin: increased cytoplasmic free calcium in rat lymphocytes. Dixon SJ, Stewart D, Grinstein S, Spiegel S. J Cell Biol; 1987 Sep 10; 105(3):1153-61. PubMed ID: 3654749 [Abstract] [Full Text] [Related]
15. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Merritt EA, Sarfaty S, van den Akker F, L'Hoir C, Martial JA, Hol WG. Protein Sci; 1994 Feb 10; 3(2):166-75. PubMed ID: 8003954 [Abstract] [Full Text] [Related]
16. Interleukin 3-dependent mouse mast cells express the cholera toxin-binding acidic glycosphingolipid, ganglioside GM1, and increase their histamine content in response to toxin. Katz HR, Levine JS, Austen KF. J Immunol; 1987 Sep 01; 139(5):1640-6. PubMed ID: 2957431 [Abstract] [Full Text] [Related]
17. Histidine-21 is involved in diphtheria toxin NAD+ binding. Papini E, Schiavo G, Rappuoli R, Montecucco C. Toxicon; 1990 Sep 01; 28(6):631-5. PubMed ID: 2402759 [Abstract] [Full Text] [Related]
18. The intrinsic tryptophan fluorescence of beta 1-bungarotoxin and the Ca2+-binding domains of the toxin as probed with Tb3+ luminescence. Chu ST, Chen YH. Biochem J; 1989 Sep 15; 262(3):773-9. PubMed ID: 2590165 [Abstract] [Full Text] [Related]
19. Interaction of pyrene-labeled monosialoganglioside GM1 micelles with cholera toxin. Picking WD. Biochem Biophys Res Commun; 1993 Sep 30; 195(3):1153-8. PubMed ID: 8216243 [Abstract] [Full Text] [Related]
20. A fluorescence study of tryptophan-histidine interactions in the peptide anantin and in solution. Vos R, Engelborghs Y. Photochem Photobiol; 1994 Jul 30; 60(1):24-32. PubMed ID: 8073074 [Abstract] [Full Text] [Related] Page: [Next] [New Search]