These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 4063486
21. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow. Li L, Walker AM, Rival DE. Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596 [Abstract] [Full Text] [Related]
22. A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases. Chaturani P, Samy RP. Biorheology; 1985; 22(6):521-31. PubMed ID: 3834958 [Abstract] [Full Text] [Related]
23. Effects of aggregation on the flow properties of red blood cell suspensions in narrow vertical tubes. Murata T, Secomb TW. Biorheology; 1989; 26(2):247-59. PubMed ID: 2605331 [Abstract] [Full Text] [Related]
24. Flow of an elastico-viscous liquid in a curved pipe of slowly varying curvature. Sarin VB. Int J Biomed Comput; 1993 Mar; 32(2):135-49. PubMed ID: 8449591 [Abstract] [Full Text] [Related]
25. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Cokelet GR, Goldsmith HL. Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854 [Abstract] [Full Text] [Related]
26. Tube flow of human blood at near zero shear. Gaehtgens P. Biorheology; 1987 Jan; 24(4):367-76. PubMed ID: 3663895 [Abstract] [Full Text] [Related]
27. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions. Misra JC, Patra MK, Misra SC. J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094 [Abstract] [Full Text] [Related]
28. Time-dependent rheological behaviour of blood flow at low shear in narrow horizontal tubes. Alonso C, Pries AR, Gaehtgens P. Biorheology; 1989 Sep; 26(2):229-46. PubMed ID: 2605330 [Abstract] [Full Text] [Related]
29. Theory of non-Newtonian viscosity of blood at low shear rate--effect of rouleaux. Murata T. Biorheology; 1976 Nov; 13(5):287-96. PubMed ID: 1000079 [No Abstract] [Full Text] [Related]
30. Effect of vessel tapering on the transition to turbulent flow: implications in the cardiovascular system. Walburn FJ, Stein PD. J Biomech Eng; 1981 May; 103(2):116-20. PubMed ID: 7278182 [Abstract] [Full Text] [Related]
31. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling. Deplano V, Knapp Y, Bailly L, Bertrand E. J Biomech; 2014 Apr 11; 47(6):1262-9. PubMed ID: 24612986 [Abstract] [Full Text] [Related]
32. Velocity field of pulsatile flow in a porous tube. Chang HN, Ha JS, Park JK, Kim IH, Shin HD. J Biomech; 1989 Apr 11; 22(11-12):1257-62. PubMed ID: 2625426 [Abstract] [Full Text] [Related]
33. Theoretical analysis of pressure pulse propagation in arterial vessels. Belardinelli E, Cavalcanti S. J Biomech; 1992 Nov 11; 25(11):1337-49. PubMed ID: 1400535 [Abstract] [Full Text] [Related]
34. Theoretical model of blood flow through hollow fibres considering hematocrit-dependent, non-Newtonian blood properties. Lerche D, Oelke R. Int J Artif Organs; 1990 Nov 11; 13(11):742-6. PubMed ID: 2089012 [Abstract] [Full Text] [Related]
35. Blood flow in non uniform tapered capillary tubes. Charm S, Kurland G. Biorheology; 1967 Sep 11; 4(4):175-83. PubMed ID: 5619591 [No Abstract] [Full Text] [Related]
36. Characterization of Flow-resistant Tubes Used for Semi-occluded Vocal Tract Voice Training and Therapy. Smith SL, Titze IR. J Voice; 2017 Jan 11; 31(1):113.e1-113.e8. PubMed ID: 27133001 [Abstract] [Full Text] [Related]
37. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery. Ramiar A, Larimi MM, Ranjbar AA. Acta Bioeng Biomech; 2017 Jan 11; 19(3):27-41. PubMed ID: 29205216 [Abstract] [Full Text] [Related]
38. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter. Reinke W, Johnson PC, Gaehtgens P. Circ Res; 1986 Aug 11; 59(2):124-32. PubMed ID: 3742742 [Abstract] [Full Text] [Related]
39. A theoretical analysis of the effects of varying fibrinogen concentration and haematocrit on the flow characteristics of blood in cylindrical tubes. Rampling MW, Challoner T. Biorheology; 1983 Aug 11; 20(2):141-52. PubMed ID: 6871430 [Abstract] [Full Text] [Related]
40. Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles. Lou Z, Yang WJ, Stein PD. J Biomech; 1993 Aug 11; 26(4-5):383-90. PubMed ID: 8478343 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]