These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 4078884

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The potential dependence of the intestinal Na+-dependent sugar transporter.
    Kimmich GA, Randles J, Restrepo D, Montrose M.
    Ann N Y Acad Sci; 1985; 456():63-76. PubMed ID: 3911844
    [Abstract] [Full Text] [Related]

  • 3. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx.
    Restrepo D, Kimmich GA.
    Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314
    [No Abstract] [Full Text] [Related]

  • 4. Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+.
    Kimmich GA, Randles J.
    Am J Physiol; 1988 Oct; 255(4 Pt 1):C486-94. PubMed ID: 3177623
    [Abstract] [Full Text] [Related]

  • 5. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA, Carter-Su C, Randles J.
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [Abstract] [Full Text] [Related]

  • 6. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA, Randles J.
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [Abstract] [Full Text] [Related]

  • 7. Effect of membrane potential on Na+-dependent sugar transport by ATP-depleted intestinal cells.
    Carter-Su C, Kimmich GA.
    Am J Physiol; 1980 Mar; 238(3):C73-80. PubMed ID: 7369349
    [Abstract] [Full Text] [Related]

  • 8. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA, Randles J.
    J Membr Biol; 1975 Aug 11; 23(1):57-76. PubMed ID: 1165580
    [Abstract] [Full Text] [Related]

  • 9. The Na+-dependent sugar carrier as a sensor of the cellular electrochemical Na+ potential.
    Kimmich GA.
    Prog Clin Biol Res; 1981 Aug 11; 73():129-42. PubMed ID: 7323079
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Kinetic analysis of mechanism of intestinal Na+-dependent sugar transport.
    Restrepo D, Kimmich GA.
    Am J Physiol; 1985 May 11; 248(5 Pt 1):C498-509. PubMed ID: 3993771
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Whole cell recording of sugar-induced currents in LLC-PK1 cells.
    Smith-Maxwell C, Bennett E, Randles J, Kimmich GA.
    Am J Physiol; 1990 Feb 11; 258(2 Pt 1):C234-42. PubMed ID: 2305866
    [Abstract] [Full Text] [Related]

  • 16. Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0.
    Kimmich GA, Randles J.
    Biochim Biophys Acta; 1980 Mar 13; 596(3):439-44. PubMed ID: 7362824
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. Sodium electrochemical potential-mediated active sugar transport.
    Lever JE.
    J Biol Chem; 1982 Aug 10; 257(15):8680-86. PubMed ID: 7096329
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.