These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 4084301

  • 1. Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP.
    Jacobus WE.
    Biochem Biophys Res Commun; 1985 Dec 31; 133(3):1035-41. PubMed ID: 4084301
    [Abstract] [Full Text] [Related]

  • 2. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK.
    Mol Cell Biochem; 1998 Jul 31; 184(1-2):249-89. PubMed ID: 9746325
    [Abstract] [Full Text] [Related]

  • 3. A simple analysis of the "phosphocreatine shuttle".
    Meyer RA, Sweeney HL, Kushmerick MJ.
    Am J Physiol; 1984 May 31; 246(5 Pt 1):C365-77. PubMed ID: 6372517
    [Abstract] [Full Text] [Related]

  • 4. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K, Watari H, Radda GK.
    Biochim Biophys Acta; 1990 Feb 19; 1051(2):144-50. PubMed ID: 2310769
    [Abstract] [Full Text] [Related]

  • 5. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE.
    Annu Rev Physiol; 1985 Feb 19; 47():707-25. PubMed ID: 3888084
    [Abstract] [Full Text] [Related]

  • 6. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells.
    McClellan G, Weisberg A, Winegrad S.
    Am J Physiol; 1983 Nov 19; 245(5 Pt 1):C423-7. PubMed ID: 6638167
    [Abstract] [Full Text] [Related]

  • 7. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.
    Schaefer S, Carr LJ, Kreutzer U, Jue T.
    Cardiovasc Res; 1993 Nov 19; 27(11):2044-51. PubMed ID: 8287416
    [Abstract] [Full Text] [Related]

  • 8. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK, Saks VA.
    Biophys J; 1997 Jul 19; 73(1):428-45. PubMed ID: 9199806
    [Abstract] [Full Text] [Related]

  • 9. Bioenergetic consequences of cardiac phosphocreatine depletion induced by creatine analogue feeding.
    Zweier JL, Jacobus WE, Korecky B, Brandejs-Barry Y.
    J Biol Chem; 1991 Oct 25; 266(30):20296-304. PubMed ID: 1939088
    [Abstract] [Full Text] [Related]

  • 10. Subcellular distribution of phosphagens in isolated perfused rat heart.
    Kauppinen RA, Hiltunen JK, Hassinen IE.
    FEBS Lett; 1980 Apr 07; 112(2):273-6. PubMed ID: 7371865
    [No Abstract] [Full Text] [Related]

  • 11. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK, van Dorsten FA, Nederhoff MG, van Echteld CJ, Veksler V, Nicolay K, Saks VA.
    Mol Cell Biochem; 1998 Jul 07; 184(1-2):209-29. PubMed ID: 9746323
    [Abstract] [Full Text] [Related]

  • 12. Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy.
    Saks VA, Belikova YO, Kuznetsov AV, Khuchua ZA, Branishte TH, Semenovsky ML, Naumov VG.
    Am J Physiol; 1991 Oct 07; 261(4 Suppl):30-8. PubMed ID: 1928451
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP, Headrick JP.
    Biochim Biophys Acta; 1996 Aug 07; 1276(1):71-9. PubMed ID: 8764892
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Response of myocardial cellular energy metabolism to variation of buffer composition during open-chest experimental cardiopulmonary resuscitation in the pig.
    Wiklund L, Ronquist G, Roomans GM, Rubertsson S, Waldenström A.
    Eur J Clin Invest; 1997 May 07; 27(5):417-26. PubMed ID: 9179550
    [Abstract] [Full Text] [Related]

  • 19. Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation.
    van Beek JH.
    Am J Physiol Cell Physiol; 2007 Sep 07; 293(3):C815-29. PubMed ID: 17581855
    [Abstract] [Full Text] [Related]

  • 20. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid.
    Shoubridge EA, Jeffry FM, Keogh JM, Radda GK, Seymour AM.
    Biochim Biophys Acta; 1985 Oct 30; 847(1):25-32. PubMed ID: 4052460
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.