These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


723 related items for PubMed ID: 409919

  • 1. Fast neutrons from a 25-MeV betatron.
    Fox JG, McAllister JD.
    Med Phys; 1977; 4(5):387-96. PubMed ID: 409919
    [Abstract] [Full Text] [Related]

  • 2. Fast and slow neutrons in an 18-MV photon beam from a Philips SL/75-20 linear accelerator.
    Gur D, Rosen JC, Bukovitz AG, Gill AW.
    Med Phys; 1978; 5(3):221-2. PubMed ID: 672815
    [Abstract] [Full Text] [Related]

  • 3. [Neutron pollution in roentgen beams from electron accelerators].
    Fehrentz D, Hassib GM, Spyropoulos B.
    Strahlentherapie; 1983 Nov; 159(11):703-12. PubMed ID: 6658859
    [Abstract] [Full Text] [Related]

  • 4. Dose levels due to neutrons in the vicinity of high-energy medical accelerators.
    McGinley PH, Wood M, Mills M, Rodriguez R.
    Med Phys; 1976 Nov; 3(6):397-402. PubMed ID: 826776
    [Abstract] [Full Text] [Related]

  • 5. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O, Ma CM.
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [Abstract] [Full Text] [Related]

  • 6. Neutron dosimetry in high energy X-ray beams of medical accelerators.
    Sohrabi M, Morgan KZ.
    Phys Med Biol; 1979 Jul; 24(4):756-66. PubMed ID: 112596
    [Abstract] [Full Text] [Related]

  • 7. Effect of variation in the energy spectrum of a cyclotron-produced fast neutron beam in a phantom relevant to its application in radiotherapy.
    Bonnett DE, Parnell CJ.
    Br J Radiol; 1982 Jan; 55(649):48-55. PubMed ID: 6797499
    [Abstract] [Full Text] [Related]

  • 8. Superheated drop detector for determination of neutron dose equivalent to patients undergoing high-energy x-ray and electron radiotherapy.
    Nath R, Meigooni AS, King CR, Smolen S, d'Errico F.
    Med Phys; 1993 Jan; 20(3):781-7. PubMed ID: 8350837
    [Abstract] [Full Text] [Related]

  • 9. Fast and thermal neutron profiles for a 25-MV x-ray beam.
    Price KW, Nath R, Holeman GR.
    Med Phys; 1978 Jan; 5(4):285-9. PubMed ID: 98695
    [Abstract] [Full Text] [Related]

  • 10. Dosimetric properties of p(90)+(Be + Ta) and p(101)+(Be + Al) neutrons.
    Harrison GH, Balcer-Kubiczek EK, Cox CR.
    Med Phys; 1980 Jan; 7(4):348-51. PubMed ID: 6771513
    [Abstract] [Full Text] [Related]

  • 11. Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16), and 18(20) MeV electron energies.
    Jaradat AK, Biggs PJ.
    Med Phys; 2008 May; 35(5):1711-7. PubMed ID: 18561646
    [Abstract] [Full Text] [Related]

  • 12. Relative measurements of fast neutron contamination in 18-MV photon beams from two linear accelerators and a betatron.
    Gur D, Bukovitz G, Rosen JC, Holmes BG.
    Med Phys; 1979 May; 6(2):140-1. PubMed ID: 460063
    [Abstract] [Full Text] [Related]

  • 13. In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator.
    d'Errico F, Nath R, Tana L, Curzio G, Alberts WG.
    Med Phys; 1998 Sep; 25(9):1717-24. PubMed ID: 9775378
    [Abstract] [Full Text] [Related]

  • 14. [Principle of neutron teletherapy with the Soviet U-120 cyclotron].
    Letov VN, Bel'skiĭ EM, Ievlev SM, Komov AI, Protasevich ET.
    Med Radiol (Mosk); 1987 Jun; 32(6):27-33. PubMed ID: 3110536
    [Abstract] [Full Text] [Related]

  • 15. Investigating in-field and out-of-field neutron contamination in high-energy medical linear accelerators based on the treatment factors of field size, depth, beam modifiers, and beam type.
    Biltekin F, Yeginer M, Ozyigit G.
    Phys Med; 2015 Jul; 31(5):517-23. PubMed ID: 25873196
    [Abstract] [Full Text] [Related]

  • 16. The effect of field modifier blocks on the fast photoneutron dose equivalent from two high-energy medical linear accelerators.
    Hashemi SM, Hashemi-Malayeri B, Raisali G, Shokrani P, Sharafi AA, Jafarizadeh M.
    Radiat Prot Dosimetry; 2008 Jul; 128(3):359-62. PubMed ID: 17875628
    [Abstract] [Full Text] [Related]

  • 17. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy.
    Trinkl S, Mares V, Englbrecht FS, Wilkens JJ, Wielunski M, Parodi K, Rühm W, Hillbrand M.
    Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362
    [Abstract] [Full Text] [Related]

  • 18. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics.
    Goodhead DT, Berry RJ, Bance DA, Gray P, Stedeford JB.
    AJR Am J Roentgenol; 1977 Oct; 129(4):709-16. PubMed ID: 409249
    [Abstract] [Full Text] [Related]

  • 19. Neutron flux-density and secondary-particle energy spectra at the 184-inch synchrocyclotron medical facility.
    Smith AR, Schimmerling W, Kanstein LL, McCaslin JG, Thomas RH.
    Med Phys; 1981 Oct; 8(5):668-76. PubMed ID: 6793821
    [Abstract] [Full Text] [Related]

  • 20. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E, Meissner P, Rassow J, Baumhoer W, Schmidt R, Sauerwein W.
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.