These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Differences in the red fluorescence of acridine orange bound to single-stranded RNA and DNA. Ichimura S. Biopolymers; 1975 May; 14(5):1033-47. PubMed ID: 1156642 [No Abstract] [Full Text] [Related]
14. Quantitative determination of single-stranded sections in DNA using the fluorescent probe acridine orange. Ichimura S, Zama M, Fujita H. Biochim Biophys Acta; 1971 Jul 29; 240(4):485-95. PubMed ID: 4941738 [No Abstract] [Full Text] [Related]
15. Fluorescence studies of dye-binding to nucleic acids. Daune M. Hoppe Seylers Z Physiol Chem; 1968 Aug 29; 349(8):954-5. PubMed ID: 5679927 [No Abstract] [Full Text] [Related]
18. Differences in thermal stability of calf thymus DNA due to monovalent cations. II. Thermal transition breadth and free energy of stacking. Szala S. Bull Acad Pol Sci Biol; 1969 Aug 29; 17(4):209-12. PubMed ID: 5816450 [No Abstract] [Full Text] [Related]
19. [An evaluation of the conformational changes in the superhelical DNA of eukaryotic cells by direct nucleoid fluorometry. II. The characteristics of the change in acridine orange fluorescence in studying the superhelical DNA of rat thymocytes]. Reshchikov AM, Vashchenko VI, Komar VE. Tsitologiia; 1991 Aug 29; 33(2):89-93. PubMed ID: 1926576 [Abstract] [Full Text] [Related]
20. Further fluorospectrophotometric studies on the binding of acridine orange with DNA. Effects of thermal denaturation of DNA and additions of spermine, kanamycin, dihydrostreptomycin, methylene blue and chlorpromazine. Yamabe S. Arch Biochem Biophys; 1973 Jan 29; 154(1):19-27. PubMed ID: 4120343 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]