These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 4114

  • 1. Intracellular pH of frog sartorius muscle.
    Hannan SF, Wiggins PM.
    Biochim Biophys Acta; 1976 Mar 25; 428(1):205-222. PubMed ID: 4114
    [Abstract] [Full Text] [Related]

  • 2. Measurement of intracellular pH of bullfrog skeletal muscle and renal tubular cells with double-barreled antimony microelectrodes.
    Matsumura Y, Kajino K, Fujimoto M.
    Membr Biochem; 1980 Mar 25; 3(1-2):99-129. PubMed ID: 6968865
    [Abstract] [Full Text] [Related]

  • 3. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle.
    Bolton TB, Vaughan-Jones RD.
    J Physiol; 1977 Sep 25; 270(3):801-33. PubMed ID: 20501
    [Abstract] [Full Text] [Related]

  • 4. Intracellular pH and distribution of weak acids across cell membranes. A study of D- and L-lactate and of DMO in rat diaphragm.
    Roos A.
    J Physiol; 1975 Jul 25; 249(1):1-25. PubMed ID: 239228
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Intracellular pH and the distribution of weak acids and bases in isolated rat superior cervical ganglia.
    Brown DA, Garthwaite J.
    J Physiol; 1979 Dec 25; 297(0):597-620. PubMed ID: 43889
    [Abstract] [Full Text] [Related]

  • 7. Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH.
    Boron WF, Roos A.
    Am J Physiol; 1976 Sep 25; 231(3):799-809. PubMed ID: 9832
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. A microelectrode study of the mechanisms of L-lactate entry into and release from frog sartorius muscle.
    Mason MJ, Thomas RC.
    J Physiol; 1988 Jun 25; 400():459-79. PubMed ID: 3262155
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Intracellular pH: measurement, control, and metabolic interrelationships.
    Cohen RD, Iles RA.
    CRC Crit Rev Clin Lab Sci; 1975 Sep 25; 6(2):101-43. PubMed ID: 241590
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Calcium transients in frog skeletal muscle fibers injected with Azo1, a tetracarboxylate Ca2+ indicator.
    Hollingworth S, Baylor SM.
    Soc Gen Physiol Ser; 1986 Sep 25; 40():261-83. PubMed ID: 3487122
    [No Abstract] [Full Text] [Related]

  • 18. Microelectrode study of intracellular pH in frog skin: dependence on serosal chloride.
    Duffey ME, Kelepouris E, Peterson-Yantorno K, Civan MM.
    Am J Physiol; 1986 Sep 25; 251(3 Pt 2):F468-74. PubMed ID: 3489414
    [Abstract] [Full Text] [Related]

  • 19. The voltage dependence of the chloride conductance of frog muscle.
    Hutter OF, Warner AE.
    J Physiol; 1972 Dec 25; 227(1):275-90. PubMed ID: 4539587
    [Abstract] [Full Text] [Related]

  • 20. The pH sensitivity of the chloride conductance of frog skeletal muscle.
    Hutter OF, Warner AE.
    J Physiol; 1967 Apr 25; 189(3):403-25. PubMed ID: 6040154
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.