These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 4127488

  • 1. Energy requirements for active transport of p-aminohippurate in renal cortical slices.
    Maxild J.
    Arch Int Physiol Biochim; 1973 Sep; 81(3):501-21. PubMed ID: 4127488
    [No Abstract] [Full Text] [Related]

  • 2. Effect of externally added ATP and related compounds on active transport of p-aminohippurate and metabolism in cortical slices of the rabbit kidney.
    Maxild J.
    Arch Int Physiol Biochim; 1978 Aug; 86(3):509-30. PubMed ID: 83819
    [No Abstract] [Full Text] [Related]

  • 3. Adenine nucleotides and PAH transport in slices of renal cortex: effects of DNP and CN - .
    Ross CR, Weiner IM.
    Am J Physiol; 1972 Feb; 222(2):356-9. PubMed ID: 5058375
    [No Abstract] [Full Text] [Related]

  • 4. An energy-dependent, sodium-independent component of active p-aminohippurate transport in rabbit renal cortex.
    Maxild J, Møller JV, Sheikh MI.
    J Physiol; 1981 Jan; 310():273-83. PubMed ID: 7230036
    [Abstract] [Full Text] [Related]

  • 5. Analysis of factors influencing the in vitro developmental pattern of p-aminohippurate transport by rabbit kidney.
    Ecker JL, Hook JB.
    Biochim Biophys Acta; 1974 Mar 15; 339(2):210-7. PubMed ID: 4827851
    [No Abstract] [Full Text] [Related]

  • 6. Regulation of pyruvate dehydrogenase in rat liver mitochondria by phosphorylation-dephosphorylation.
    Walajtys EI, Gottesman DP, Williamson JR.
    J Biol Chem; 1974 Mar 25; 249(6):1857-65. PubMed ID: 4817968
    [No Abstract] [Full Text] [Related]

  • 7. Mechanisms of active transport in isolated bacterial membrane vesicles. 18. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone.
    Kaback HR, Reeves JP, Short SA, Lombardi FJ.
    Arch Biochem Biophys; 1974 Jan 25; 160(1):215-22. PubMed ID: 4597558
    [No Abstract] [Full Text] [Related]

  • 8. Mitochondrial metabolism in stress-susceptible pigs.
    Eikelenboom G, van den Bergh SG.
    J Anim Sci; 1973 Sep 25; 37(3):692-6. PubMed ID: 4742098
    [No Abstract] [Full Text] [Related]

  • 9. Regulation of pyruvate-dehydrogenase interconversion in rat-liver mitochondria as related to the phosphorylation state of intramitochondrial adenine nucleotides.
    Wieland OH, Portenhauser R.
    Eur J Biochem; 1974 Jun 15; 45(2):577-88. PubMed ID: 4854074
    [No Abstract] [Full Text] [Related]

  • 10. Studies on the control of pyruvate oxidation in isolated fetal rat liver cells.
    Berger R, Hommes FA.
    Biochim Biophys Acta; 1974 Mar 26; 333(3):535-45. PubMed ID: 4847552
    [No Abstract] [Full Text] [Related]

  • 11. Metabolic studies on renal transport of p-aminohippurate in vitro.
    Maxild J, Moller JV.
    Biochim Biophys Acta; 1969 Sep 02; 184(3):614-24. PubMed ID: 5821025
    [No Abstract] [Full Text] [Related]

  • 12. Glycolysis and pasteur effect in rat reticulocytes.
    Ghosh AK, Sloviter HA.
    J Biol Chem; 1973 May 10; 248(9):3035-40. PubMed ID: 4700450
    [No Abstract] [Full Text] [Related]

  • 13. Kinetics of p-aminohippurate transport in renal cortical slices from neonatal and adult rats.
    Stopp M, Bräunlich H.
    Biochem Pharmacol; 1977 Oct 01; 26(19):1809-12. PubMed ID: 907718
    [No Abstract] [Full Text] [Related]

  • 14. Acetate influence upon the transport kinetics of p-aminohippurate at 37 degrees C in rabbit kidney slices.
    Gerencser GA, Chaisetseree C, Hong SK.
    Proc Soc Exp Biol Med; 1977 Mar 01; 154(3):397-400. PubMed ID: 847001
    [No Abstract] [Full Text] [Related]

  • 15. Relationship between cephaloridine and p-aminohippurate transport in the kidney.
    Tune BM, Fernholt M.
    Am J Physiol; 1973 Nov 01; 225(5):1114-7. PubMed ID: 4745209
    [No Abstract] [Full Text] [Related]

  • 16. Renal cortical slice uptake and runout of N-methylnicotinamide and p-aminohippurate after potassium dichromate treatment.
    Hirsch GH, Pakuts AP.
    Can J Physiol Pharmacol; 1974 Jun 01; 52(3):465-8. PubMed ID: 4277631
    [No Abstract] [Full Text] [Related]

  • 17. Metabolic alterations in brain during anoxic-anoxia and subsequent recovery.
    Drewes LR, Gilboe DD, Betz AL.
    Arch Neurol; 1973 Dec 01; 29(6):385-90. PubMed ID: 4759414
    [No Abstract] [Full Text] [Related]

  • 18. The potentiating effect of adenosine diphosphate in the uncoupling of oxidative phosphorylation in potato mitochondria.
    Laties GG.
    Biochemistry; 1973 Aug 14; 12(17):3350-5. PubMed ID: 4732864
    [No Abstract] [Full Text] [Related]

  • 19. Oligomycin-insensitive ATPase and calcium transport in rat kidney cortex mitochondria.
    Gmaj P, Nowicka C, Angielski S.
    FEBS Lett; 1974 Oct 01; 47(1):76-80. PubMed ID: 4279181
    [No Abstract] [Full Text] [Related]

  • 20. In vitro uptake of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) by renal cortical tissue of rabbits and rats.
    Berndt WO, Koschier F.
    Toxicol Appl Pharmacol; 1973 Dec 01; 26(4):559-70. PubMed ID: 4771605
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.