These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 4144323

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Effect of aurovertin on energy-linked processes related to oxidative phosphorylation.
    Lenaz G.
    Biochem Biophys Res Commun; 1965 Oct 26; 21(2):170-5. PubMed ID: 4286024
    [No Abstract] [Full Text] [Related]

  • 25. The effect of 2,4-dinitrophenol on adipose-tissue metabolism.
    Rognstad R, Katz J.
    Biochem J; 1969 Feb 26; 111(4):431-44. PubMed ID: 4388239
    [Abstract] [Full Text] [Related]

  • 26. Bioenergetics and the problem of tumor growth.
    Racker E.
    Am Sci; 1972 Feb 26; 60(1):56-63. PubMed ID: 4332766
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Hymenolepis diminuta: mitochondrial transhydrogenase as an additional site for anaerobic phosphorylation.
    Mercer-Haines N, Fioravanti CF.
    Exp Parasitol; 2008 May 26; 119(1):24-9. PubMed ID: 18262524
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Lung cell mitochondria: rapid oxidation of glycerol-l-phosphate but slow oxidation of 3-hydroxybutyrate.
    Mastafa MG, Cross CE.
    Am Rev Respir Dis; 1974 Feb 26; 109(2):301-3. PubMed ID: 4811788
    [No Abstract] [Full Text] [Related]

  • 32. ON THE MECHANISM OF OXIDATIVE PHOSPHORYLATION. 8. FURTHER EVIDENCE FOR DISTINCT TRANSHYDROGENASE REACTIONS IN SUBMITOCHONDRIAL PARTICLES.
    ANDREOLI TE, PHARO RL, SANADI DR.
    Biochim Biophys Acta; 1964 Jul 15; 90():16-23. PubMed ID: 14201153
    [No Abstract] [Full Text] [Related]

  • 33. Steroid hydroxylations in rat adrenal mitochondria. II. Competition between energy-linked transhydrogenase-dependent steroid hydroxylation and oxidative phosphorylation for high-energy intermediates and NADH.
    Sauer LA.
    Arch Biochem Biophys; 1970 Aug 15; 139(2):340-50. PubMed ID: 4322800
    [No Abstract] [Full Text] [Related]

  • 34. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C, Påhlman IL, Ansell R, Rigoulet M, Adler L, Gustafsson L.
    Yeast; 1998 Mar 15; 14(4):347-57. PubMed ID: 9559543
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Cooperativity in the inhibition of oxidative phosphorylation by chlorophenoxyisobutyrate.
    Panini SR, Kurup CK.
    Biochim Biophys Acta; 1974 Oct 18; 368(1):29-38. PubMed ID: 4370957
    [No Abstract] [Full Text] [Related]

  • 39. The mitochondrion and biologic oxidations.
    Nahrwold ML, Cohen PJ.
    Clin Anesth; 1975 Oct 18; 11(1):1-23. PubMed ID: 164299
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.