These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 4152759
1. Activation of hexose monophosphate pathway in brain by electrical stimulation in vitro. Kimura H, Naito K, Nakagawa K, Kuriyama K. J Neurochem; 1974 Jul; 23(1):79-84. PubMed ID: 4152759 [No Abstract] [Full Text] [Related]
2. An evaluation of regulation of the hexose monophosphate shunt in Escherichia coli. Orthner CL, Pizer LI. J Biol Chem; 1974 Jun 25; 249(12):3750-5. PubMed ID: 4151946 [No Abstract] [Full Text] [Related]
3. The glucose 6-phosphate metabolic crossroads in brain. Studies at the enzyme level. Vallejo CG, Marco R, Sebastián J. Arch Biochem Biophys; 1971 Nov 25; 147(1):41-8. PubMed ID: 4398889 [No Abstract] [Full Text] [Related]
4. Metabolites and enzymes of the pentose phosphate pathway in isolated nerve endings. Kauffman FC, Harkonen MH. J Neurochem; 1977 Apr 25; 28(4):745-50. PubMed ID: 894283 [No Abstract] [Full Text] [Related]
5. Pathways of NADPH formation in Escherichia coli. Csonka LN, Fraenkel DG. J Biol Chem; 1977 May 25; 252(10):3382-91. PubMed ID: 16899 [No Abstract] [Full Text] [Related]
6. [Glycolysis in the eye tissues of the rabbit in ontogeny. I. The enzymes of glycolysis and hexosemonophosphate shunt]. Faustov VS. Ontogenez; 1977 May 25; 8(4):361-9. PubMed ID: 143640 [Abstract] [Full Text] [Related]
7. Enzymes of glucose catabolism in Monilinia fructicola. Huber FM, Gottlieb D. Mycopathol Mycol Appl; 1969 Jan 29; 37(1):49-56. PubMed ID: 5768608 [No Abstract] [Full Text] [Related]
8. Increase in hexosemonophosphate shunt activity during tissue repair. Gudbjarnason S, Cowan C, Bing RJ. Life Sci; 1967 May 15; 6(10):1093-7. PubMed ID: 6033046 [No Abstract] [Full Text] [Related]
11. Genetic and biochemical studies of the hexose monophosphate shunt in Neurospora crassa. I. The influence of genetic defects in the pathway on colonial morphology. Fuscaldo KE, Lechner JF, Bazinet G. Can J Microbiol; 1971 Jun 15; 17(6):783-8. PubMed ID: 4397246 [No Abstract] [Full Text] [Related]
12. Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis. Brown AT, Wittenberger CL. J Bacteriol; 1971 May 15; 106(2):456-67. PubMed ID: 4396792 [Abstract] [Full Text] [Related]
13. Hexose-monophosphate shunt response to diamide in the component layers of the cornea. Geroski DH, Eldelhauser HF, O'Brien WJ. Exp Eye Res; 1978 Jun 15; 26(6):611-9. PubMed ID: 680018 [No Abstract] [Full Text] [Related]
14. [Regulatory factors in methylene blue catalysis in erythrocytes]. Roigas H, Zoellner E, Jacobasch G, Schultze M, Rapoport S. Eur J Biochem; 1970 Jan 15; 12(1):24-30. PubMed ID: 4392179 [No Abstract] [Full Text] [Related]
18. Limiting role of 6-phosphogluconolactonase in erythrocyte hexose monophosphate pathway metabolism. Beutler E, Kuhl W. J Lab Clin Med; 1985 Nov 15; 106(5):573-7. PubMed ID: 3932573 [Abstract] [Full Text] [Related]
19. Glycolytic enzymes in human brain. Robinson N, Phillips BM. Biochem J; 1964 Aug 15; 92(2):254-9. PubMed ID: 5838069 [No Abstract] [Full Text] [Related]
20. The kinetic properties of hexose transport into synaptosomes from guinea pig cerebral cortex. Heaton GM, Bachelard HS. J Neurochem; 1973 Nov 15; 21(5):1099-108. PubMed ID: 4761699 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]