These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 4203337

  • 21. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ, Crow VL, Lee LN, Garon CF.
    J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044
    [Abstract] [Full Text] [Related]

  • 22. Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway.
    Hamilton IR, Lebtag H.
    J Bacteriol; 1979 Dec; 140(3):1102-4. PubMed ID: 230175
    [Abstract] [Full Text] [Related]

  • 23. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.
    Thompson J, Thomas TD.
    J Bacteriol; 1977 May; 130(2):583-95. PubMed ID: 122509
    [Abstract] [Full Text] [Related]

  • 24. Replacement of isoleucine-47 by threonine in the HPr protein of Streptococcus salivarius abrogates the preferential metabolism of glucose and fructose over lactose and melibiose but does not prevent the phosphorylation of HPr on serine-46.
    Gauthier M, Brochu D, Eltis LD, Thomas S, Vadeboncoeur C.
    Mol Microbiol; 1997 Aug; 25(4):695-705. PubMed ID: 9379899
    [Abstract] [Full Text] [Related]

  • 25. Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization.
    McGinnis JF, Paigen K.
    J Bacteriol; 1969 Nov; 100(2):902-13. PubMed ID: 4901365
    [Abstract] [Full Text] [Related]

  • 26. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA, Russell JB.
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [Abstract] [Full Text] [Related]

  • 27. In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis.
    Thompson J.
    J Bacteriol; 1978 Nov; 136(2):465-76. PubMed ID: 101523
    [Abstract] [Full Text] [Related]

  • 28. Galactose transport systems in Streptococcus lactis.
    Thompson J.
    J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094
    [Abstract] [Full Text] [Related]

  • 29. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH, Roseman S.
    J Biol Chem; 1976 Nov 10; 251(21):6606-15. PubMed ID: 789370
    [Abstract] [Full Text] [Related]

  • 30. Selective advantages of various bacterial carbohydrate transport mechanisms.
    Andrews KJ, Lin EC.
    Fed Proc; 1976 Aug 10; 35(10):2185-9. PubMed ID: 820574
    [Abstract] [Full Text] [Related]

  • 31. Carbohydrate transport in Clostridium perfringens type A.
    Groves DJ, Gronlund AF.
    J Bacteriol; 1969 Dec 10; 100(3):1256-63. PubMed ID: 4311868
    [Abstract] [Full Text] [Related]

  • 32. Role of metabolic energy in the transport of -galactosides by Streptococcus lactis.
    Kashket ER, Wilson TH.
    J Bacteriol; 1972 Feb 10; 109(2):784-9. PubMed ID: 4621686
    [Abstract] [Full Text] [Related]

  • 33. Effect of sugar analogues on growth, sugar utilization, and acid production by Streptococcus mutans.
    Schachtele DF, Leung WL.
    J Dent Res; 1975 Feb 10; 54(3):433-40. PubMed ID: 1056348
    [Abstract] [Full Text] [Related]

  • 34. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.
    Thomas TD, Turner KW, Crow VL.
    J Bacteriol; 1980 Nov 10; 144(2):672-82. PubMed ID: 6776093
    [Abstract] [Full Text] [Related]

  • 35. Carbohydrate metabolism in Bacillus brevis ATCC 9999.
    Asatani M, Kurahashi K.
    J Biochem; 1977 Apr 10; 81(4):813-22. PubMed ID: 881417
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Glucose transport in Streptococcus mutans: preparation of cytoplasmic membranes and characteristics of phosphotransferase activity.
    Schachtele CF.
    J Dent Res; 1975 Apr 10; 54(2):330-8. PubMed ID: 1054344
    [Abstract] [Full Text] [Related]

  • 38. Characterization of lac+ transductants of Streptococcus lactis.
    Molskness TA, Sandine WE, Brown LR.
    Appl Microbiol; 1974 Nov 10; 28(5):753-8. PubMed ID: 4216286
    [Abstract] [Full Text] [Related]

  • 39. Regulation of 2-deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system.
    Ye JJ, Reizer J, Saier MH.
    Microbiology (Reading); 1994 Dec 10; 140 ( Pt 12)():3421-9. PubMed ID: 7881559
    [Abstract] [Full Text] [Related]

  • 40. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays.
    Ajdić D, Pham VT.
    J Bacteriol; 2007 Jul 10; 189(14):5049-59. PubMed ID: 17496079
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.