These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


307 related items for PubMed ID: 4206871

  • 1. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R: partial purification and properties of methionyl-transfer ribonucleic acid synthetase and methionyl-transfer ribonucleic acid formyltransferase.
    Samuel CE, Rabinowitz JC.
    J Bacteriol; 1974 Apr; 118(1):21-31. PubMed ID: 4206871
    [Abstract] [Full Text] [Related]

  • 2. Methionine transfer ribonucleic acid from folate-sufficient and folate-deficient Streptococcus faecalis R.
    Samuel CE, Murray CL, Rabinowitz JC.
    J Biol Chem; 1972 Nov 10; 247(21):6856-65. PubMed ID: 4628266
    [No Abstract] [Full Text] [Related]

  • 3. Evidence against the folate-mediated formylation of formyl-accepting methionyl transfer ribonucleic acid in Streptococcus faecalis R.
    Samuel CE, D'Ari L, Rabinowitz JC.
    J Biol Chem; 1970 Oct 10; 245(19):5115-21. PubMed ID: 4990168
    [No Abstract] [Full Text] [Related]

  • 4. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R. Biochemical and biophysical properties of methionine transfer ribonucleic acid.
    Samuel CE, Rabinowitz JC.
    J Biol Chem; 1974 Feb 25; 249(4):1198-206. PubMed ID: 4205317
    [No Abstract] [Full Text] [Related]

  • 5. Effect of formylation on the chromatographic behavior of methionyl transfer ribonucleic acid.
    Samuel CE, Rabinowitz JC.
    Anal Biochem; 1972 May 25; 47(1):244-52. PubMed ID: 4624155
    [No Abstract] [Full Text] [Related]

  • 6. Role of methionyl-transfer ribonucleic acid in the regulation of methionyl-transfer ribonucleic acid synthetase of Escherichia coli K-12.
    Cassio D.
    J Bacteriol; 1975 Aug 25; 123(2):589-97. PubMed ID: 1097419
    [Abstract] [Full Text] [Related]

  • 7. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli.
    Jacques Y, Blanquet S.
    Eur J Biochem; 1977 Oct 03; 79(2):433-41. PubMed ID: 336359
    [Abstract] [Full Text] [Related]

  • 8. Regulation of methionyl-transfer ribonucleic acid synthetase formation in Escherichia coli and Salmonella typhimurium.
    Archibold ER, Williams LS.
    J Bacteriol; 1973 Jun 03; 114(3):1007-13. PubMed ID: 4576394
    [Abstract] [Full Text] [Related]

  • 9. Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine.
    Delk AS, Rabinowitz JC.
    Proc Natl Acad Sci U S A; 1975 Feb 03; 72(2):528-30. PubMed ID: 804695
    [Abstract] [Full Text] [Related]

  • 10. Initiation of protein synthesis without formylation in a mutant of Escherichia coli that grows in the absence of tetrahydrofolate.
    Baumstark BR, Spremulli LL, RajBhandary UL, Brown GM.
    J Bacteriol; 1977 Jan 03; 129(1):457-71. PubMed ID: 318648
    [Abstract] [Full Text] [Related]

  • 11. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM, Jones DS.
    Biochem J; 1977 Aug 01; 165(2):367-73. PubMed ID: 336037
    [Abstract] [Full Text] [Related]

  • 12. Growth-linked instability of a mutant valyl-transfer ribonucleic acid synthetase in Escherichia coli.
    Anderson JJ, Neidhardt FC.
    J Bacteriol; 1972 Jan 01; 109(1):315-25. PubMed ID: 4550670
    [Abstract] [Full Text] [Related]

  • 13. Substrate specificity of a mutant alanyl-transfer ribonucleic acid synthetase of Escherichia coli.
    Buckel P, Lubitz W, Böck A.
    J Bacteriol; 1971 Dec 01; 108(3):1008-16. PubMed ID: 4945179
    [Abstract] [Full Text] [Related]

  • 14. Generation of multiple forms of methionyl-tRNA synthetase from the multi-enzyme complex of mammalian aminoacyl-tRNA synthetases by endogenous proteolysis.
    Siddiqui FA, Yang DC.
    Biochim Biophys Acta; 1985 Apr 05; 828(2):177-87. PubMed ID: 3884048
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Leucyl-transfer ribonucleic acid synthetase from a wild-type and temperature-sensitive mutant of Salmonella typhimurium.
    Mikulka TW, Stieglitz BI, Calvo JM.
    J Bacteriol; 1972 Feb 05; 109(2):584-93. PubMed ID: 4550813
    [Abstract] [Full Text] [Related]

  • 17. Sulphur metabolism in Paracoccus denitrificans. Purification, properties and regulation of cysteinyl-and methionyl-tRNA synthetase.
    Burnell JN, Whatley FR.
    Biochim Biophys Acta; 1977 Mar 15; 481(1):266-78. PubMed ID: 14693
    [Abstract] [Full Text] [Related]

  • 18. Arginyl-transfer ribonucleic-acid synthetase from Bacillus stearothermophilus. Purification, properties and mechanism of action.
    Parfait R, Grosjean H.
    Eur J Biochem; 1972 Oct 15; 30(2):242-9. PubMed ID: 4351436
    [No Abstract] [Full Text] [Related]

  • 19. Defects of two temperature-sensitive lysyl-transfer ribonucleic acid synthetase mutants of Bacillus subtilis.
    Racine FM, Steinberg W.
    J Bacteriol; 1974 Oct 15; 120(1):372-83. PubMed ID: 4370814
    [Abstract] [Full Text] [Related]

  • 20. NH2-terminal amino acid distribution and amino acid composition of Streptococcus faecalis R soluble and ribosomal proteins.
    Samuel CE, Murray CL, Rabinowitz JC.
    J Bacteriol; 1973 Oct 15; 116(1):41-7. PubMed ID: 4200842
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.