These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 4207204

  • 1. Transfection of Bacillus subtilis with bacteriophage H1 DNA: fate of transfecting DNA and transfection enhancement in B. subtilis uur+ and uur- strains.
    Arwert F, Venema G.
    Mol Gen Genet; 1974; 128(1):55-72. PubMed ID: 4207204
    [No Abstract] [Full Text] [Related]

  • 2. Transfection enhancement in Bacillus subtilis displays features of a novel DNA repair pathway. I: DNA base and nucleolytic specificity.
    Radany EH, Malanoski G, Ambulos NP, Friedberg EC, Yasbin RE.
    Mutat Res; 1997 Aug; 384(2):107-20. PubMed ID: 9298119
    [Abstract] [Full Text] [Related]

  • 3. In vitro repair of UV-irradiated Micrococcus luteus bacteriophage N1 transfecting DNA.
    Mahler I, George J, Grossman L.
    J Virol; 1974 Mar; 13(3):765-7. PubMed ID: 4823319
    [Abstract] [Full Text] [Related]

  • 4. Transfection enhancement in Bacillus subtilis displays features of a novel DNA repair pathway. II: Host constitutive expression, repair DNA synthesis, and in vitro activity.
    Radany EH, Malanoski G, Ambulos NP, Friedberg EC, Yasbin RE.
    Mutat Res; 1997 Aug; 384(2):121-34. PubMed ID: 9298120
    [Abstract] [Full Text] [Related]

  • 5. Effect of lysogeny on transfection and transfection enhancement in Bacillus subtilis.
    Yasbin RE, Wilson GA, Young FE.
    J Bacteriol; 1975 Jan; 121(1):305-12. PubMed ID: 803953
    [Abstract] [Full Text] [Related]

  • 6. On the nature of the radiation damage in the thymine containing strand of hybrid BU-DNA after long wave-length U.V.
    Köhnlein W, Mönkehaus F.
    Int J Radiat Biol Relat Stud Phys Chem Med; 1972 Sep; 22(3):293-6. PubMed ID: 4628820
    [No Abstract] [Full Text] [Related]

  • 7. Ability of Bacillus subtilis protoplasts to repair irradiated bacteriophage deoxyribonucleic acid via acquired and natural enzymatic systems.
    Yasbin RE, Andersen BJ, Sutherland BM.
    J Bacteriol; 1981 Sep; 147(3):949-53. PubMed ID: 6792188
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Nucleases specific for ultraviolet light-irradiated DNA and their possible role in dark repair.
    Takagi Y, Sekiguchi M, Okubo S, Nakayama H, Shimada K, Yasuda S, Nishimoto T, Yoshihara H.
    Cold Spring Harb Symp Quant Biol; 1968 Sep; 33():219-27. PubMed ID: 4891964
    [No Abstract] [Full Text] [Related]

  • 20. On the regulation of the initiation of DNA replication in bacteria.
    Yoshikawa H, Haas M.
    Cold Spring Harb Symp Quant Biol; 1968 Sep; 33():843-55. PubMed ID: 4978692
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.