These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 4267300

  • 21. Evidence for Mg 2+ -dependent, Na + + K + -activated ATPase and Ca 2+ -ATPase in the human term placenta.
    Miller RK, Berndt WO.
    Proc Soc Exp Biol Med; 1973 May; 143(1):118-22. PubMed ID: 4267366
    [No Abstract] [Full Text] [Related]

  • 22. Caclium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum. Requirement for potassium ions.
    Duggan PF.
    J Biol Chem; 1977 Mar 10; 252(5):1620-7. PubMed ID: 14156
    [Abstract] [Full Text] [Related]

  • 23. Kinetics of (Na + ,K + )-ATPase of human erythrocyte membranes. I. Activation by Na + and K + .
    Peter HW, Wolf HU.
    Biochim Biophys Acta; 1972 Dec 01; 290(1):300-9. PubMed ID: 4264469
    [No Abstract] [Full Text] [Related]

  • 24. Calcium uptake, calcium release and adenosinetriphosphatase activity in sarcoplasmic reticulum fragments deposited on millipore filters.
    Alonso GL, Arrigó DM, Terradas SE, Nikonov JM, Nespral D, Palomba SE.
    Biochim Biophys Acta; 1977 Jul 04; 468(1):31-50. PubMed ID: 141943
    [No Abstract] [Full Text] [Related]

  • 25. Effects of divalent cations and nucleotides on the reactivity of the sulfhydryl groups of sarcoplasmic reticulum membranes. Evidence for structural changes occurring during the calcium transport cycle.
    Murphy AJ.
    J Biol Chem; 1978 Jan 25; 253(2):385-9. PubMed ID: 618878
    [No Abstract] [Full Text] [Related]

  • 26. Calcium binding properties of sarcoplasmic reticulum membranes.
    Cohen A, Selinger Z.
    Biochim Biophys Acta; 1969 Jun 03; 183(1):27-35. PubMed ID: 4307352
    [No Abstract] [Full Text] [Related]

  • 27. PH-induced changes in the reactions controlled by the low- and high-affinity Ca2+-binding sites in sarcoplasmic reticulum.
    Verjovski-Almeida S, de Meis L.
    Biochemistry; 1977 Jan 25; 16(2):329-34. PubMed ID: 13812
    [Abstract] [Full Text] [Related]

  • 28. Adenosine 5'-triphosphate dependent fluxes of manganese and and hydrogen ions in sarcoplasmic reticulum vesicles.
    Chiesi M, Inesi G.
    Biochemistry; 1980 Jun 24; 19(13):2912-8. PubMed ID: 7190437
    [No Abstract] [Full Text] [Related]

  • 29. The initial phase of Ca2+-uptake and ATPase activity of sarcoplasmic reticulum vesicles.
    Kurzmack M, Inesi G.
    FEBS Lett; 1977 Feb 15; 74(1):35-7. PubMed ID: 138599
    [No Abstract] [Full Text] [Related]

  • 30. Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate through two different reactions.
    de Meis L, Masuda H.
    Biochemistry; 1974 May 07; 13(10):2057-62. PubMed ID: 4826884
    [No Abstract] [Full Text] [Related]

  • 31. Analysis of calcium binding and release by canine cardiac relaxing system (sarcoplasmic reticulum). The use of specific inhibitors to construct a two-component model for calcium binding and transport.
    Entman ML, Snow TR, Freed D, Schwartz A.
    J Biol Chem; 1973 Nov 25; 248(22):7762-72. PubMed ID: 4270770
    [No Abstract] [Full Text] [Related]

  • 32. The reversibility of the sarcoplasmic calcium pump.
    Hasselbach W.
    Biochim Biophys Acta; 1978 Apr 10; 515(1):23-53. PubMed ID: 147710
    [No Abstract] [Full Text] [Related]

  • 33. Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles.
    Beeler TJ.
    J Biol Chem; 1980 Oct 10; 255(19):9156-61. PubMed ID: 6106021
    [Abstract] [Full Text] [Related]

  • 34. Molecular mechanism of active calcium transport by sarcoplasmic reticulum.
    Tada M, Yamamoto T, Tonomura Y.
    Physiol Rev; 1978 Jan 10; 58(1):1-79. PubMed ID: 23557
    [No Abstract] [Full Text] [Related]

  • 35. Activation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations.
    Shigekawa M, Pearl LJ.
    J Biol Chem; 1976 Nov 25; 251(22):6947-52. PubMed ID: 136443
    [Abstract] [Full Text] [Related]

  • 36. [Coupling mechanism of ATP hydrolysis to active transport in sarcoplasmic reticulum].
    Kanazawa T.
    Seikagaku; 1972 Aug 25; 44(8):323-39. PubMed ID: 4265248
    [No Abstract] [Full Text] [Related]

  • 37. ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum.
    Meissner G.
    Biochim Biophys Acta; 1973 Apr 16; 298(4):906-26. PubMed ID: 4269715
    [No Abstract] [Full Text] [Related]

  • 38. Active transport of calcium ion in sarcoplasmic membranes.
    Inesi G.
    Annu Rev Biophys Bioeng; 1972 Apr 16; 1():191-210. PubMed ID: 4346304
    [No Abstract] [Full Text] [Related]

  • 39. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids.
    Nakamura H, Jilka RL, Boland R, Martonosi AN.
    J Biol Chem; 1976 Sep 10; 251(17):5414-23. PubMed ID: 134038
    [Abstract] [Full Text] [Related]

  • 40. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Evidence for a hydrolysis cycle not coupled to intermediate acyl phosphate formation and calcium translocation.
    Van Winkle WB, Tate CA, Bick RJ, Entman ML.
    J Biol Chem; 1981 Mar 10; 256(5):2268-74. PubMed ID: 6450765
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.