These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


435 related items for PubMed ID: 4274214

  • 1. A kinetic description for sodium and potassium effects on (Na+ plus K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation.
    Lindenmayer GE, Schwartz A, Thompson HK.
    J Physiol; 1974 Jan; 236(1):1-28. PubMed ID: 4274214
    [Abstract] [Full Text] [Related]

  • 2. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD, Ellory JC.
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [Abstract] [Full Text] [Related]

  • 3. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM, Mildvan AS.
    J Supramol Struct; 1975 Sep; 3(3):304-13. PubMed ID: 171521
    [Abstract] [Full Text] [Related]

  • 4. A possible molecular mechanism of the action of digitalis: ouabain action on calcium binding to sites associated with a purified sodium-potassium-activated adenosine triphosphatase from kidney.
    Gervais A, Lane LK, Anner BM, Lindenmayer GE, Schwartz A.
    Circ Res; 1977 Jan; 40(1):8-14. PubMed ID: 137087
    [Abstract] [Full Text] [Related]

  • 5. Studies on (Na+ plus K+)-activated ATPase. XXXVII. Stabilization by cations of the enzyme-ouabain complex formed with Mg1+ and inorganic phosphate.
    Schuurmans Stekhoven FM, De Pont JJ, Bonting SL.
    Biochim Biophys Acta; 1976 Jan 08; 419(1):137-49. PubMed ID: 128379
    [Abstract] [Full Text] [Related]

  • 6. Kinetics of Na+-ATPase: influence of Na+ and K+ on substrate binding and hydrolysis.
    Plesner L, Plesner IW.
    Biochim Biophys Acta; 1985 Aug 27; 818(2):222-34. PubMed ID: 3161541
    [Abstract] [Full Text] [Related]

  • 7. Identification of potential regulatory sites of the Na+,K+-ATPase by kinetic analysis.
    Kong BY, Clarke RJ.
    Biochemistry; 2004 Mar 02; 43(8):2241-50. PubMed ID: 14979720
    [Abstract] [Full Text] [Related]

  • 8. (Na+, K+)-activated adenosinetriphosphatase of axonal membranes, cooperativity and control. Steady-state analysis.
    Gache C, Rossi B, Lazdunski M.
    Eur J Biochem; 1976 May 17; 65(1):293-306. PubMed ID: 132350
    [Abstract] [Full Text] [Related]

  • 9. Sodium and potassium ion-dependent adenosine triphosphatase of mammalian brain. Interactions of magnesium ions with the phosphatase site.
    Swann AC, Albers RW.
    Biochim Biophys Acta; 1978 Mar 14; 523(1):215-27. PubMed ID: 147107
    [Abstract] [Full Text] [Related]

  • 10. Stimulation of hepatic sodium and potassium-activated adenosine triphosphatase activity by phenobarbital. Its possible role in regulation of bile flow.
    Simon FR, Sutherland E, Accatino L.
    J Clin Invest; 1977 May 14; 59(5):849-61. PubMed ID: 192764
    [Abstract] [Full Text] [Related]

  • 11. Membrane (Na+ + K+)-ATPase of canine brain, heart and kidney. Tissue-dependent differences in kinetic properties and the influence of purification procedures.
    Choi YR, Akera T.
    Biochim Biophys Acta; 1978 Apr 04; 508(2):313-27. PubMed ID: 147705
    [Abstract] [Full Text] [Related]

  • 12. Kinetics studies on the interaction between ouabain and (Na+,K+)-ATPase.
    Choi YR, Akera T.
    Biochim Biophys Acta; 1977 Apr 12; 481(2):648-59. PubMed ID: 139932
    [Abstract] [Full Text] [Related]

  • 13. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex.
    Goldfarb PS, Rodnight R.
    Biochem J; 1970 Nov 12; 120(1):15-24. PubMed ID: 4250237
    [Abstract] [Full Text] [Related]

  • 14. Caclium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum. Requirement for potassium ions.
    Duggan PF.
    J Biol Chem; 1977 Mar 10; 252(5):1620-7. PubMed ID: 14156
    [Abstract] [Full Text] [Related]

  • 15. Post-tetanic hyperpolarization, sodium-potassium-activated adenosine triphosphatase and high energy phosphate levels in garfish olfactory nerve.
    McDougal DB, Osborn LA.
    J Physiol; 1976 Mar 10; 256(1):41-60. PubMed ID: 132526
    [Abstract] [Full Text] [Related]

  • 16. Kinetics of (Na+ + K+)-ATPase: analysis of the influence of Na+ and K+ by steady-state kinetics.
    Plesner IW, Plesner L.
    Biochim Biophys Acta; 1985 Aug 27; 818(2):235-50. PubMed ID: 2992590
    [Abstract] [Full Text] [Related]

  • 17. Ouabain-receptor interactions in (Na+ + K+)-ATPase preparations. II. Effect of cations and nucleotides on rate constants and dissociation constants.
    Erdmann E, Schoner W.
    Biochim Biophys Acta; 1973 Dec 22; 330(3):302-15. PubMed ID: 4272500
    [No Abstract] [Full Text] [Related]

  • 18. Phosphorylation from adenosine triphosphate of sodium- and potassium-activated adenosine triphosphatase. Comparison of enzyme-ligand complexes as precursors to the phosphoenzyme.
    Märdh S, Post RL.
    J Biol Chem; 1977 Jan 25; 252(2):633-8. PubMed ID: 137902
    [Abstract] [Full Text] [Related]

  • 19. Inhibition of protein kinase C, (sodium plus potassium)-activated adenosine triphosphatase, and sodium pump by synthetic phospholipid analogues.
    Zheng B, Oishi K, Shoji M, Eibl H, Berdel WE, Hajdu J, Vogler WR, Kuo JF.
    Cancer Res; 1990 May 15; 50(10):3025-31. PubMed ID: 2159369
    [Abstract] [Full Text] [Related]

  • 20. Sodium + potassium-activated ATPase of mammalian brain. Regulation of phosphatase activity.
    Swann AC, Albers W.
    Biochim Biophys Acta; 1975 Mar 25; 382(3):437-56. PubMed ID: 164910
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.