These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Partial resolution and reconstitution of the adenosine triphosphate-dependent reduction of diphosphopyridine nucleotide by succinate. SANADI DR, FLUHARTY AL, ANDREOLI TE. Biochem Biophys Res Commun; 1962 Jul 03; 8():200-3. PubMed ID: 14496713 [No Abstract] [Full Text] [Related]
27. [On the mechanism of electron transport in the oxidation-reduction chain in experimental myocardial infarct]. Golubev AM. Arkh Patol; 1968 Jul 03; 30(3):39-43. PubMed ID: 4298608 [No Abstract] [Full Text] [Related]
29. Target size of components in oxidative phosphorylation. Studies with a linear accelerator. Kagawa Y. Biochim Biophys Acta; 1967 May 09; 131(3):586-8. PubMed ID: 4292162 [No Abstract] [Full Text] [Related]
33. [Experimental studies of the mechanism of action of reserpine]. Chekman IS. Biull Eksp Biol Med; 1972 Mar 09; 73(3):59-61. PubMed ID: 4336355 [No Abstract] [Full Text] [Related]
34. [Acetylcholine activity in the myocardium]. Esyrev OV, Uspanova ZhK, Omarova RD. Tsitologiia; 1971 Jan 09; 13(1):114-7. PubMed ID: 4326271 [No Abstract] [Full Text] [Related]
35. [Characteristics of the oxidative phosphorylation in the brain mitochondria during hypoxia of varying duration]. Khvatova EM, Shumatova EN, Miromova GV, Semenova TS, Bobyleva TF. Ukr Biokhim Zh; 1973 Jan 09; 45(6):693-7. PubMed ID: 4151545 [No Abstract] [Full Text] [Related]
38. [Enzymatic implications in the use of energy of macroergic phosphorated systems in the myocardium]. Păuşescu E. Med Interna (Bucur); 1970 May 09; 22(5):523-38. PubMed ID: 4246614 [No Abstract] [Full Text] [Related]