These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
52 related items for PubMed ID: 429264
1. Asymmetric distribution of calcium binding sites of sarcoplasmic reticulum fragments. Miyamoto H, Kasai M. J Biochem; 1979 Mar; 85(3):765-73. PubMed ID: 429264 [No Abstract] [Full Text] [Related]
2. Biochemical characterization of calsequestrin-binding 30-kDa protein in sarcoplasmic reticulum of skeletal muscle. Kagari T, Yamaguchi N, Kasai M. Biochem Biophys Res Commun; 1996 Oct 23; 227(3):700-6. PubMed ID: 8885997 [Abstract] [Full Text] [Related]
3. Crystallization and structure-function of calsequestrin. Kang C, Trumble WR, Dunker AK. Methods Mol Biol; 2002 Oct 23; 172():281-94. PubMed ID: 11833354 [No Abstract] [Full Text] [Related]
4. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen. Beard NA, Wei L, Dulhunty AF. Clin Exp Pharmacol Physiol; 2009 Mar 23; 36(3):340-5. PubMed ID: 19278523 [Abstract] [Full Text] [Related]
5. Protein interactions within calcium release units of muscle. Franzini-Armstrong C, Tijskens P, Jones LR. J Muscle Res Cell Motil; 2004 Mar 23; 25(8):586-7. PubMed ID: 16285026 [No Abstract] [Full Text] [Related]
6. Distribution of Ca(2+)-modulating proteins in sarcoplasmic reticulum membranes after denervation. Lehotský J, Bezáková G, Kaplán P, Raeymaekers L. Gen Physiol Biophys; 1993 Aug 23; 12(4):339-48. PubMed ID: 8299929 [Abstract] [Full Text] [Related]
7. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Szegedi C, Sárközi S, Herzog A, Jóna I, Varsányi M. Biochem J; 1999 Jan 01; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019 [Abstract] [Full Text] [Related]
8. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Beard NA, Laver DR, Dulhunty AF. Prog Biophys Mol Biol; 2004 May 01; 85(1):33-69. PubMed ID: 15050380 [Abstract] [Full Text] [Related]
9. [Modification of the enzyme system for Ca2+ transport in sarcoplasmic reticulum membranes during lipid peroxidation. Changes in the chemical composition and ultrastructural organization of the membranes]. Kagan VE, Arkhipenko IuV, Kozlov IuP. Biokhimiia; 1983 Jan 01; 48(1):158-66. PubMed ID: 6219718 [No Abstract] [Full Text] [Related]
10. The sarcoplasmic calcium pump. A model of energy transduction in biological membranes. Hasselbach W. Top Curr Chem; 1979 Jan 01; 78():1-56. PubMed ID: 375465 [No Abstract] [Full Text] [Related]
11. Luminal pH regulated calcium release kinetics in sarcoplasmic reticulum vesicles. Donoso P, Beltrán M, Hidalgo C. Biochemistry; 1996 Oct 15; 35(41):13419-25. PubMed ID: 8873610 [Abstract] [Full Text] [Related]
12. Sarcoplasmic reticulum membrane and heart development. Michalak M. Can J Cardiol; 1987 Oct 15; 3(5):251-60. PubMed ID: 2440534 [Abstract] [Full Text] [Related]
13. Fast kinetics of calcium dissociation from calsequestrin. Beltrán M, Barrientos G, Hidalgo C. Biol Res; 2006 Oct 15; 39(3):493-503. PubMed ID: 17106581 [Abstract] [Full Text] [Related]
14. [Fractionation of fragments of skeletal muscle sarcoplasmic reticulum according to their sensitivity to caffeine]. Aliev MK, Levitskaia EL, Levchenko TS, Levitskiĭ DO. Biokhimiia; 1985 Jun 15; 50(6):911-8. PubMed ID: 4027285 [Abstract] [Full Text] [Related]
15. Identification of a region of calsequestrin that binds to the junctional face membrane of sarcoplasmic reticulum. Collins JH, Tarcsafalvi A, Ikemoto N. Biochem Biophys Res Commun; 1990 Feb 28; 167(1):189-93. PubMed ID: 2310388 [Abstract] [Full Text] [Related]
17. [The effect of OCl- and Ag+ on active and passive calcium transport in the sarcoplasmic reticulum]. Antipenko AE, Pechatnikova EV, Dizhe GP, Krasovskaia IE, Sharonov VP, Lyzlova SN. Biokhimiia; 1993 Mar 28; 58(3):399-405. PubMed ID: 8387348 [Abstract] [Full Text] [Related]