These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


86 related items for PubMed ID: 4292759

  • 1. Ion accumulation in bacterial systems. I. Isolation of two particulate fractions participating in silicon metabolism, from Proteus mirabilis cell-free extracts.
    Heinen W.
    Arch Biochem Biophys; 1967 Apr; 120(1):86-92. PubMed ID: 4292759
    [No Abstract] [Full Text] [Related]

  • 2. Ion accumulation in bacterial systems. 3. Respiration-dependent accumulation of silicate by a particulate fraction from Proteus mirabilis cell-free extracts.
    Heinen W.
    Arch Biochem Biophys; 1967 Apr; 120(1):101-7. PubMed ID: 6048709
    [No Abstract] [Full Text] [Related]

  • 3. Ion accumulation in bacterial systems. II. Properties of silicate-metabolizing cell-free extracts and particulate fractions from Proteus mirabilis.
    Heinen W.
    Arch Biochem Biophys; 1967 Apr; 120(1):93-100. PubMed ID: 4292760
    [No Abstract] [Full Text] [Related]

  • 4. A "three gases technique" as a method for the determination of volatile hydrides and related compounds in a modified Warburg assay.
    Heinen W.
    Arch Biochem Biophys; 1965 Jul; 111(1):236-8. PubMed ID: 4285170
    [No Abstract] [Full Text] [Related]

  • 5. On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri.
    Kröger A, Dadák V, Klingenberg M, Diemer F.
    Eur J Biochem; 1971 Aug 16; 21(3):322-33. PubMed ID: 4328123
    [No Abstract] [Full Text] [Related]

  • 6. TIME-DEPENDENT DISTRIBUTION OF SILICON IN INTACT CELLS AND CELL-FREE EXTRACTS OF PROTEUS MIRABILIS AS A MODEL OF BACTERIAL SILICON TRANSPORT.
    HEINEN W.
    Arch Biochem Biophys; 1965 Apr 16; 110():137-49. PubMed ID: 14321843
    [No Abstract] [Full Text] [Related]

  • 7. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles.
    Grinius LL, Jasaitis AA, Kadziauskas YP, Liberman EA, Skulachev VP, Topali VP, Tsofina LM, Vladimirova MA.
    Biochim Biophys Acta; 1970 Aug 04; 216(1):1-12. PubMed ID: 4395700
    [No Abstract] [Full Text] [Related]

  • 8. [Silicon metabolism in microorganisms. VII. Distribution of silicic acid in cell fractions of Proteus mirabilis and the demonstration of carbohydrate silicic acid esters].
    Heinen W.
    Arch Mikrobiol; 1965 Sep 06; 52(1):69-79. PubMed ID: 4287630
    [No Abstract] [Full Text] [Related]

  • 9. On the mechanism of anaerobic formation of succinate by Proteus vulgaris.
    SASAKI S, KASAMAKI A, USAMI S.
    J Biochem; 1961 May 06; 49():421-6. PubMed ID: 13746648
    [No Abstract] [Full Text] [Related]

  • 10. Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri.
    Kröger A.
    Biochim Biophys Acta; 1974 May 22; 347(2):273-89. PubMed ID: 4407318
    [No Abstract] [Full Text] [Related]

  • 11. [Enzymatic organization of mitochondrial membranes].
    Wojtczak L.
    Postepy Biochem; 1971 May 22; 17(2):209-23. PubMed ID: 4329121
    [No Abstract] [Full Text] [Related]

  • 12. [Oxido-reduction reactions at the level of cytoplasmic membranes and mesosomes of Bacillus subtilis].
    Frehel C, Ferrandes B, Ryter A.
    Biochim Biophys Acta; 1971 May 11; 234(2):226-41. PubMed ID: 4327794
    [No Abstract] [Full Text] [Related]

  • 13. Resolution and reconstitution of the succinoxidase pathway of Mycobacterium phlei.
    Kalra VK, Murti CR, Brodie AF.
    Arch Biochem Biophys; 1971 Dec 11; 147(2):734-43. PubMed ID: 4332729
    [No Abstract] [Full Text] [Related]

  • 14. The action of lysozyme on bacterial electron transport systems.
    Shah SB, King HK.
    J Gen Microbiol; 1966 Jul 11; 44(1):1-13. PubMed ID: 4290564
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Biochemical aspects of the visual process. XIX. Formation of isorhodopsin from photolyzed rhodopsin by bacterial action.
    Rotmans JP, Daemen FJ, Bonting SL.
    Biochim Biophys Acta; 1972 Jun 23; 267(3):583-7. PubMed ID: 4558497
    [No Abstract] [Full Text] [Related]

  • 17. Electron transport-linked compared with proton-induced ATP generation in Thiobacillus novellus.
    Cole JS, Aleem MI.
    Proc Natl Acad Sci U S A; 1973 Dec 23; 70(12):3571-5. PubMed ID: 4357881
    [Abstract] [Full Text] [Related]

  • 18. Conversion of biomembrane-produced energy into electric form. 3. Chromatophores of Rhodospirillum rubrum.
    Isaev PI, Liberman EA, Samuilov VD, Skulachev VP, Tsofina LM.
    Biochim Biophys Acta; 1970 Aug 04; 216(1):22-9. PubMed ID: 4322294
    [No Abstract] [Full Text] [Related]

  • 19. [Membrane oxidation of L-phenylalanine in Proteus mirabilis].
    Pelmont J, Rossat AM.
    C R Acad Hebd Seances Acad Sci D; 1970 Sep 07; 271(10):869-72. PubMed ID: 4990693
    [No Abstract] [Full Text] [Related]

  • 20. Oxidative phosphorylation in Thiobacillus novellus.
    Cole JS, Aleem MI.
    Biochem Biophys Res Commun; 1970 Feb 20; 38(4):736-43. PubMed ID: 4315352
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.