These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


98 related items for PubMed ID: 4319691

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Some haem protein-linked pyridine nucleotide oxidation systems in Rhodospirillum rubrum.
    HORIO T, KAMEN MD.
    Biochim Biophys Acta; 1960 Oct 07; 43():382-92. PubMed ID: 13715849
    [No Abstract] [Full Text] [Related]

  • 43. EFFECT OF OXYGEN ON GROWTH AND THE SYNTHESIS OF BACTERIOCHLOROPHYLL IN RHODOSPIRILLUM MOLISCHIANUM.
    SISTROM WR.
    J Bacteriol; 1965 Feb 07; 89(2):403-8. PubMed ID: 14255707
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Adenosine triphosphate cellular levels in Rhodosopirillum rubrum during transition from aerobic to anaerobic metabolism.
    Oelze J, Kamen MD.
    Biochim Biophys Acta; 1971 Apr 06; 234(1):137-43. PubMed ID: 5560361
    [No Abstract] [Full Text] [Related]

  • 46. Two different NADH dehydrogenases in respiration of Rhodospirillum rubrum chromatophores.
    Nisimoto Y, Kakuno T, Yamashita J, Horio T.
    J Biochem; 1973 Dec 06; 74(6):1205-16. PubMed ID: 4149985
    [No Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. On ultrastructures in Rhodopseudomonas gelatinosa and Rhodospirillum tenue.
    de Boer WE.
    Antonie Van Leeuwenhoek; 1969 Dec 06; 35(2):241-2. PubMed ID: 5310456
    [No Abstract] [Full Text] [Related]

  • 49. The bacteriochlorophyll absorption band shifts linked with the energy state of photosynthetic bacteria membranes.
    Barsky EL, Samuilov VD.
    J Bioenerg; 1973 Apr 06; 4(3):391-5. PubMed ID: 4200406
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Relationship between photosynthetic and oxidative phosphorylations in chromatophores from light-grown cells of Rhodospirillum rubrum.
    Yamashita J, Yoshimura S, Matuo Y, Horio T.
    Biochim Biophys Acta; 1967 Jul 05; 143(1):154-72. PubMed ID: 4292784
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. [Fatty acid composition of whole cells, thylakoids and lipopolysaccharides of Rhodospirillum rubrum and Rhodopseudomonas capsulata].
    Schröder J, Biedermann M, Drews G.
    Arch Mikrobiol; 1969 Jul 05; 66(3):273-80. PubMed ID: 5384698
    [No Abstract] [Full Text] [Related]

  • 58. [Effect of temperature on the dark reduction of photooxidized bacteriochlorophyll P870 in Rhodospirillum rubrum photosynthetic bacteria].
    Lukashev EP, Noks PP, Kononenko AA, Venediktov PS, Rubin AB.
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975 Jul 05; (7):48-55. PubMed ID: 809066
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Regulation of photoreduction in Rhodospirillum rubrum by ammonia.
    Schick HJ.
    Arch Mikrobiol; 1971 Jul 05; 75(2):110-20. PubMed ID: 5540220
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.