These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
178 related items for PubMed ID: 4326771
1. Metabolism of benzoic acid by bacteria. Accumulation of (-)-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid by mutant strain of Alcaligenes eutrophus. Reiner AM, Hegeman GD. Biochemistry; 1971 Jun 22; 10(13):2530-6. PubMed ID: 4326771 [No Abstract] [Full Text] [Related]
2. Metabolism of aromatic compounds in bacteria. Purification and properties of the catechol-forming enzyme, 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (NAD + ) oxidoreductase (decarboxylating). Reiner AM. J Biol Chem; 1972 Aug 25; 247(16):4960-5. PubMed ID: 4341530 [No Abstract] [Full Text] [Related]
3. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol. Reiner AM. J Bacteriol; 1971 Oct 25; 108(1):89-94. PubMed ID: 4399343 [Abstract] [Full Text] [Related]
4. Cometabolism: a technique for the accumulation of biochemical products. Horvath RS, Alexander M. Can J Microbiol; 1970 Nov 25; 16(11):1131-2. PubMed ID: 5491278 [No Abstract] [Full Text] [Related]
8. The metabolism of p-fluorobenzoic acid by a Pseudomonas sp. Harper DB, Blakley ER. Can J Microbiol; 1971 Aug 25; 17(8):1015-23. PubMed ID: 4328873 [No Abstract] [Full Text] [Related]
9. The microbial degradation of cyclohexanecarboxylic acid by a beta-oxidation pathway with simultaneous induction to the utilization of benzoate. Blakley ER. Can J Microbiol; 1978 Jul 25; 24(7):847-55. PubMed ID: 679070 [Abstract] [Full Text] [Related]
10. Degradation of polychlorinated biphenyls by two species of Achromobacter. Ahmed M, Focht DD. Can J Microbiol; 1973 Jan 25; 19(1):47-52. PubMed ID: 4685335 [No Abstract] [Full Text] [Related]
11. Enhancement of co-metabolism of chlorobenzoates by the co-substrate enrichment technique. Horvath RS. Appl Microbiol; 1973 Jun 25; 25(6):961-3. PubMed ID: 4716724 [Abstract] [Full Text] [Related]
14. Chlorophenol and chlorobenzoic acid co-metabolism by different genera of soil bacteria. Spokes JR, Walker N. Arch Mikrobiol; 1974 Mar 04; 96(2):125-34. PubMed ID: 4836257 [No Abstract] [Full Text] [Related]
15. Oxidation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Nadeau LJ, Sayler GS, Spain JC. Arch Microbiol; 1998 Dec 04; 171(1):44-9. PubMed ID: 9871018 [Abstract] [Full Text] [Related]
16. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on dehydrogenation of 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid. Reineke W, Knackmuss HJ. Biochim Biophys Acta; 1978 Sep 06; 542(3):424-9. PubMed ID: 687665 [Abstract] [Full Text] [Related]
17. Construction and characterization of heavy metal-resistant haloaromatic-degrading Alcaligenes eutrophus strains. Springael D, Diels L, Hooyberghs L, Kreps S, Mergeay M. Appl Environ Microbiol; 1993 Jan 06; 59(1):334-9. PubMed ID: 8439161 [Abstract] [Full Text] [Related]
19. Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase. Ampe F, Lindley ND. J Bacteriol; 1995 Oct 06; 177(20):5826-33. PubMed ID: 7592330 [Abstract] [Full Text] [Related]
20. Enterochelin hydrolysis and iron metabolism in Escherichia coli. O'Brien IG, Cox GB, Gibson F. Biochim Biophys Acta; 1971 Jun 22; 237(3):537-49. PubMed ID: 4330269 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]