These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 4331061
1. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. Konings WN, Barnes EM, Kaback HR. J Biol Chem; 1971 Oct 10; 246(19):5857-61. PubMed ID: 4331061 [No Abstract] [Full Text] [Related]
2. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli. Kaback HR, Barnes EM. J Biol Chem; 1971 Sep 10; 246(17):5523-31. PubMed ID: 4941946 [No Abstract] [Full Text] [Related]
3. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles. Barnes EM, Kaback HR. J Biol Chem; 1971 Sep 10; 246(17):5518-22. PubMed ID: 4330922 [No Abstract] [Full Text] [Related]
4. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli. Lombardi FJ, Kaback HR. J Biol Chem; 1972 Dec 25; 247(24):7844-57. PubMed ID: 4344983 [No Abstract] [Full Text] [Related]
6. Site of interaction between phenazine methosulphate and the respiratory chain of Bacillus subtilis. Bisschop A, Bergsma J, Konings WN. Eur J Biochem; 1979 Jan 15; 93(2):369-74. PubMed ID: 218814 [No Abstract] [Full Text] [Related]
7. Active transport of manganese in isolated membrane vesicles of Bacillus subtilis. Bhattacharyya P. J Bacteriol; 1975 Jul 15; 123(1):123-7. PubMed ID: 49350 [Abstract] [Full Text] [Related]
15. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport. Hong JS, Kaback HR. Proc Natl Acad Sci U S A; 1972 Nov 18; 69(11):3336-40. PubMed ID: 4343963 [Abstract] [Full Text] [Related]
16. Bacterial calcium transport: energy-dependent calcium uptake by membrane vesicles from Bacillus megaterium. Golub EE, Bronner F. J Bacteriol; 1974 Sep 18; 119(3):840-3. PubMed ID: 4211830 [Abstract] [Full Text] [Related]
17. A spin-label study of energy-coupled active transport in Escherichia coli membrane vesicles. Baldassare JJ, Robertson DE, McAfee AG, Ho C. Biochemistry; 1974 Dec 03; 13(25):5210-4. PubMed ID: 4373033 [No Abstract] [Full Text] [Related]
18. Membrane potential and active transport in membrane vesicles from Escherichia coli. Schuldiner S, Kaback HR. Biochemistry; 1975 Dec 16; 14(25):5451-61. PubMed ID: 172125 [No Abstract] [Full Text] [Related]
19. Sodium-ion stimulated amino acid uptake in membrane vesicles of alkalophilic Bacillus no. 8-1. Kitada M, Horikoshi K. J Biochem; 1980 Dec 16; 88(6):1757-64. PubMed ID: 6780545 [Abstract] [Full Text] [Related]
20. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Lombardi FJ, Reeves JP, Short SA, Kaback HR. Ann N Y Acad Sci; 1974 Feb 18; 227():312-27. PubMed ID: 4363926 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]