These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 4331061
21. Active transport in bacterial cytoplasmic membrane vesicles. Kaback HR. Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375 [No Abstract] [Full Text] [Related]
23. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate. Boonstra J, Sips HJ, Konings WN. Eur J Biochem; 1976 Oct 01; 69(1):35-44. PubMed ID: 791648 [Abstract] [Full Text] [Related]
24. Mechanisms of active transport in isolated bacterial membrane vesicles. VII. Fluorescence of 1-anilino-8-naphthalenesulfonate during D-lactate oxidation by membrane vesicles from Escherichia coli. Reeves JP, Lombardi FJ, Kaback HR. J Biol Chem; 1972 Oct 10; 247(19):6204-11. PubMed ID: 4568608 [No Abstract] [Full Text] [Related]
25. Coupling of energy to active transport of amino acids in Escherichia coli. Simoni RD, Shallenberger MK. Proc Natl Acad Sci U S A; 1972 Sep 10; 69(9):2663-7. PubMed ID: 4341704 [Abstract] [Full Text] [Related]
26. Stimulation of proline transport by cupric ion in membrane vesicles from Mycobacterium phlei. Yankofsky SA, Brodie AF. Biochem Biophys Res Commun; 1976 Mar 22; 69(2):455-61. PubMed ID: 178313 [No Abstract] [Full Text] [Related]
27. Reduction of nonheme iron in the respiratory chain of Escherichia coli. Bragg PD. Can J Biochem; 1970 Jul 22; 48(7):777-83. PubMed ID: 4326918 [No Abstract] [Full Text] [Related]
28. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport. Lombardi FJ, Reeves JP, Kaback HR. J Biol Chem; 1973 May 25; 248(10):3551-65. PubMed ID: 4573982 [No Abstract] [Full Text] [Related]
31. Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus. Short SA, White DC, Kaback HR. J Biol Chem; 1972 Jan 10; 247(1):298-304. PubMed ID: 4553437 [No Abstract] [Full Text] [Related]
32. Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles. Cohn DE, Kaczorowski GJ, Kaback HR. Biochemistry; 1981 May 26; 20(11):3308-13. PubMed ID: 7018574 [Abstract] [Full Text] [Related]
34. Determination of the absolute number of Escherichia coli membrane vesicles that catalyze active transport. Short SA, Kaback HR, Kaczorowski G, Fisher J, Walsh CT, Silverstein SC. Proc Natl Acad Sci U S A; 1974 Dec 26; 71(12):5032-6. PubMed ID: 4612538 [Abstract] [Full Text] [Related]
40. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli. Eagon RG, Hodge TW, Rake JB, Yarbrough JM. Can J Microbiol; 1979 Jul 25; 25(7):798-802. PubMed ID: 113071 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]