These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 4359516

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers.
    Kristensen NB, Harmon DL.
    J Anim Sci; 2004 Jul; 82(7):2033-42. PubMed ID: 15309950
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Extent of propionate metabolism during absorption from the bovine ruminoreticulum.
    Weigand E, Young JW, McGilliard AD.
    Biochem J; 1972 Jan; 126(1):201-9. PubMed ID: 5075230
    [Abstract] [Full Text] [Related]

  • 8. Partial purification of enzymes of bovine kidney mitochondria activating volatile fatty acids.
    Ricks CA, Cook RM.
    J Dairy Sci; 1981 Dec; 64(12):2344-9. PubMed ID: 6122698
    [Abstract] [Full Text] [Related]

  • 9. Comparison of techniques to determine the clearance of ruminal volatile fatty acids.
    Resende Júnior JC, Pereira MN, Bôer H, Tamminga S.
    J Dairy Sci; 2006 Aug; 89(8):3096-106. PubMed ID: 16840627
    [Abstract] [Full Text] [Related]

  • 10. Adaptation of compartmental schemes for interpreting isotope dilution data on volatile fatty acid metabolism in the rumen to the non-steady state and for single-dose injection.
    France J, Siddons RC, Dhanoa MS.
    J Theor Biol; 1991 Nov 21; 153(2):247-54. PubMed ID: 1787739
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The activation of short-chain fatty acids by the soluble fraction of guinea-pig heart and liver mitochondria. The search for a distinct propionyl-CoA synthetase.
    Groot PH.
    Biochim Biophys Acta; 1975 Jan 24; 380(1):12-20. PubMed ID: 1122307
    [Abstract] [Full Text] [Related]

  • 17. Effect of increasing ruminal butyrate absorption on splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers.
    Kristensen NB, Harmon DL.
    J Anim Sci; 2004 Dec 24; 82(12):3549-59. PubMed ID: 15537776
    [Abstract] [Full Text] [Related]

  • 18. Effect of starter diet supplementation on rumen epithelial morphology and expression of genes involved in cell proliferation and metabolism in pre-weaned lambs.
    Sun DM, Mao SY, Zhu WY, Liu JH.
    Animal; 2018 Nov 24; 12(11):2274-2283. PubMed ID: 29477152
    [Abstract] [Full Text] [Related]

  • 19. Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver.
    Ricks CA, Cook RM.
    J Dairy Sci; 1981 Dec 24; 64(12):2324-35. PubMed ID: 7341659
    [Abstract] [Full Text] [Related]

  • 20. Net portal appearance of volatile fatty acids in sheep intraruminally infused with mixtures of acetate, propionate, isobutyrate, butyrate, and valerate.
    Kristensen NB, Pierzynowski SG, Danfaer A.
    J Anim Sci; 2000 May 24; 78(5):1372-9. PubMed ID: 10834594
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.