These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 4359745
21. Activities of potassium and sodium ions in rabbit heart muscle. Lee CO, Fozzard HA. J Gen Physiol; 1975 Jun; 65(6):695-708. PubMed ID: 1194884 [Abstract] [Full Text] [Related]
22. Electrical resistance and volume flow in glass microelectrodes. Firth DR, DeFelice LJ. Can J Physiol Pharmacol; 1971 May; 49(5):436-47. PubMed ID: 5120271 [No Abstract] [Full Text] [Related]
23. Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance. Ammann D, Chao PS, Simon W. Neurosci Lett; 1987 Feb 24; 74(2):221-6. PubMed ID: 3574760 [Abstract] [Full Text] [Related]
24. Neutral carrier sodium ion-selective microelectrode for extracellular studies. Ammann D, Anker P. Neurosci Lett; 1985 Jun 24; 57(3):267-71. PubMed ID: 4034095 [Abstract] [Full Text] [Related]
25. On the electrical gradient across the gill of the sea water-adapted eel. House CR, Maetz J. Comp Biochem Physiol A Comp Physiol; 1974 Mar 01; 47(3):917-24. PubMed ID: 4156261 [No Abstract] [Full Text] [Related]
26. Membrane potentials and ion permeability in a cation exchange membrane. Gunn RB, Curran PF. Biophys J; 1971 Jul 01; 11(7):559-71. PubMed ID: 5089914 [Abstract] [Full Text] [Related]
27. Nigericin-induced charge transfer across membranes. Markin VS, Sokolov VS, Bogulavsky LI, Jaguzhinsky LS. J Membr Biol; 1975 Dec 04; 25(1-2):23-45. PubMed ID: 2783 [Abstract] [Full Text] [Related]
28. [Effect of estradiol dipropionate on cell membrane electrical properties and their electrolyte makeup in animals of different ages]. Martynenko OA. Probl Endokrinol (Mosk); 1980 Dec 04; 26(1):55-8. PubMed ID: 7360738 [Abstract] [Full Text] [Related]
29. Molecular basis for the action of macrocyclic carriers on passive ionic translocation across lipid bilayer membranes. Eisenman G, Szabo G, McLaughlin SG, Ciani SM. J Bioenerg; 1973 Jan 04; 4(1):93-148. PubMed ID: 4717529 [No Abstract] [Full Text] [Related]
30. Simple model of ion transport through alamethicin channels in lipid membranes. Smejtek P. Chem Phys Lipids; 1974 Oct 04; 13(2):141-54. PubMed ID: 4430057 [No Abstract] [Full Text] [Related]
31. Salivary gland K+ transport: in vivo studies with K+-specific microelectrodes. Poulsen JH, Bledsoe SW. Am J Physiol; 1978 Jan 04; 234(1):E79-83. PubMed ID: 623254 [Abstract] [Full Text] [Related]
32. Glass microelectrode studies on intramural papillary muscle cells. Description of preparation and studies on normal dog papillary muscle. Solberg LE, Singer DH, Ten Eick RE, Duffin EG. Circ Res; 1974 Jun 04; 34(6):783-97. PubMed ID: 4832704 [No Abstract] [Full Text] [Related]
34. A neutral carrier-based liquid membrane microelectrode for divalent putrescine cations. Drouin HR. Eur Biophys J; 1999 Jun 04; 28(7):600-4. PubMed ID: 10541798 [Abstract] [Full Text] [Related]
35. Construction of K+- and Na+-sensitive theta-microelectrodes with fine tips: an easy method with high yield. Meyer G, Rossetti C, Bottà G, Cremaschi D. Pflugers Arch; 1985 Aug 04; 404(4):378-81. PubMed ID: 4059030 [Abstract] [Full Text] [Related]
36. Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids. Fujimoto M, Kubota T. Jpn J Physiol; 1976 Aug 04; 26(6):631-50. PubMed ID: 16152 [Abstract] [Full Text] [Related]
37. Kinetic theory model for ion movement through biological membranes. II. Interionic selectivity. Mackey MC. Biophys J; 1971 Jan 04; 11(1):91-7. PubMed ID: 5539002 [Abstract] [Full Text] [Related]