These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 4360536

  • 1. Nature of the specificity of alcohol coupling to L-alanine transport into isolated membrane vesicles of a marine pseudomonad.
    Sprott GD, MacLeod RA.
    J Bacteriol; 1974 Mar; 117(3):1043-54. PubMed ID: 4360536
    [Abstract] [Full Text] [Related]

  • 2. Specific electron donor-energized transport of alpha-aminoisobutyric acid and K+ into intact cells of a marine pseudomonad.
    Thompson J, MacLeod RA.
    J Bacteriol; 1974 Mar; 117(3):1055-64. PubMed ID: 4360537
    [Abstract] [Full Text] [Related]

  • 3. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG, Chappell JB.
    Biochem J; 1978 Feb 15; 170(2):395-405. PubMed ID: 205211
    [Abstract] [Full Text] [Related]

  • 4. Terminal branching of the respiratory electron transport chain in Neisseria meningitidis.
    Yu EK, DeVoe IW.
    J Bacteriol; 1980 Jun 15; 142(3):879-87. PubMed ID: 6769915
    [Abstract] [Full Text] [Related]

  • 5. Studies of respiratory components and oxidative phosphorylation in mitochondria of mi-1 Neurospora crassa.
    Drabikowska A, Kosmakos FC, Brodie AF.
    J Bacteriol; 1974 Feb 15; 117(2):733-40. PubMed ID: 4359654
    [Abstract] [Full Text] [Related]

  • 6. Relation between reduced nicotinamide adenine dinucleotide oxidation and amino acid transport in membrane vesicles from Bacillus subtilis.
    Bisschop A, de Jong L, Lima Costa ME, Konings WN.
    J Bacteriol; 1975 Mar 15; 121(3):807-13. PubMed ID: 234948
    [Abstract] [Full Text] [Related]

  • 7. Na + -dependent amino acid transport in isolated membrane vesicles of a marine pseudomonad energized by electron donors.
    Sprott GD, MacLeod RA.
    Biochem Biophys Res Commun; 1972 May 26; 47(4):838-45. PubMed ID: 4337324
    [No Abstract] [Full Text] [Related]

  • 8. The respiratory chain of Azotobacter vinelandii. III. The effect of cyanide in the presence of substrates.
    Kauffman HF, Van Gelder BF.
    Biochim Biophys Acta; 1974 Feb 22; 333(2):218-27. PubMed ID: 19400034
    [Abstract] [Full Text] [Related]

  • 9. The H(+)-motive and Na(+)-motive respiratory chains in Bacillus FTU subcellular vesicles.
    Kostyrko VA, Semeykina AL, Skulachev VP, Smirnova IA, Vaghina ML, Verkhovskaya ML.
    Eur J Biochem; 1991 Jun 01; 198(2):527-34. PubMed ID: 1645662
    [Abstract] [Full Text] [Related]

  • 10. Sodium-ion stimulated amino acid uptake in membrane vesicles of alkalophilic Bacillus no. 8-1.
    Kitada M, Horikoshi K.
    J Biochem; 1980 Dec 01; 88(6):1757-64. PubMed ID: 6780545
    [Abstract] [Full Text] [Related]

  • 11. Effects of acetate and other short-chain fatty acids on sugar and amino acid uptake of Bacillus subtilis.
    Sheu CW, Konings WN, Freese E.
    J Bacteriol; 1972 Aug 01; 111(2):525-30. PubMed ID: 4340866
    [Abstract] [Full Text] [Related]

  • 12. Effects of selected inhibitors on electron transport in Neisseria gonorrhoeae.
    Kenimer EA, Lapp DF.
    J Bacteriol; 1978 May 01; 134(2):537-45. PubMed ID: 207670
    [Abstract] [Full Text] [Related]

  • 13. Respiratory mechanisms in the Flexibacteriaceae: terminal oxidase systems of Saprospira grandis and Vitreoscilla species.
    Dietrich WE, Biggins J.
    J Bacteriol; 1971 Mar 01; 105(3):1083-9. PubMed ID: 4323292
    [Abstract] [Full Text] [Related]

  • 14. Effect of respiratory inhibitors and quinone analogues on the aerobic electron transport system of Eikenella corrodens.
    Jaramillo-Lanchero RD, Suarez-Alvarez P, Teheran-Sierra L.
    Sci Rep; 2021 Apr 26; 11(1):8987. PubMed ID: 33903681
    [Abstract] [Full Text] [Related]

  • 15. Aerobic and anaerobic respiratory systems in Campylobacter fetus subsp. jejuni grown in atmospheres containing hydrogen.
    Carlone GM, Lascelles J.
    J Bacteriol; 1982 Oct 26; 152(1):306-14. PubMed ID: 6288661
    [Abstract] [Full Text] [Related]

  • 16. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ, SMITH PF.
    J Bacteriol; 1964 Jul 26; 88(1):122-9. PubMed ID: 14197876
    [Abstract] [Full Text] [Related]

  • 17. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A, Larsen AK, Parhamifar L, Meyle KD, Wu LP, Moghimi SM.
    Biochim Biophys Acta; 2013 Oct 26; 1827(10):1213-25. PubMed ID: 23850549
    [Abstract] [Full Text] [Related]

  • 18. Energy generation mechanisms in the in vitro-grown Mycobacterium lepraemurium.
    Ishaque M.
    Int J Lepr Other Mycobact Dis; 1992 Mar 26; 60(1):61-70. PubMed ID: 1318345
    [Abstract] [Full Text] [Related]

  • 19. Physiological role for the membrane bound ascorbate-TMPD oxidase in pseudomonas putida.
    Jones MV.
    Arch Microbiol; 1975 Mar 10; 102(3):275-9. PubMed ID: 168828
    [Abstract] [Full Text] [Related]

  • 20. Characterization of the electron transport system in Brucella abortus.
    Rest RF, Robertson DC.
    J Bacteriol; 1975 Apr 10; 122(1):139-44. PubMed ID: 235507
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.