These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. Koppenol WH, Margoliash E. J Biol Chem; 1982 Apr 25; 257(8):4426-37. PubMed ID: 6279635 [Abstract] [Full Text] [Related]
3. Single catalytic site model for the oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase. Speck SH, Dye D, Margoliash E. Proc Natl Acad Sci U S A; 1984 Jan 25; 81(2):347-51. PubMed ID: 6320180 [Abstract] [Full Text] [Related]
4. Mutations in the docking site for cytochrome c on the Paracoccus heme aa3 oxidase. Electron entry and kinetic phases of the reaction. Drosou V, Malatesta F, Ludwig B. Eur J Biochem; 2002 Jun 25; 269(12):2980-8. PubMed ID: 12071962 [Abstract] [Full Text] [Related]
5. Comparative kinetic studies of cytochromes c in reactions with mitochondrial cytochrome c oxidase and reductase. Errede B, Kamen MD. Biochemistry; 1978 Mar 21; 17(6):1015-27. PubMed ID: 204337 [Abstract] [Full Text] [Related]
6. Low-temperature studies of electron transfer between different cytochromes c and cytochrome c oxidase. Ferguson-Miller S, Brautigan DL, Chance B, Waring A, Margoliash E. Biochemistry; 1978 May 30; 17(11):2246-9. PubMed ID: 208599 [Abstract] [Full Text] [Related]
8. Effect of specific trifluoroacetylation of individual cytochrome c lysines on the reaction with cytochrome oxidase. Staudenmayer N, Ng S, Smith MB, Millett F. Biochemistry; 1977 Feb 22; 16(4):600-4. PubMed ID: 189807 [Abstract] [Full Text] [Related]
9. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate cytochrome c derivatives. Kotlyar AB, Borovok N, Hazani M. Biochemistry; 1997 Dec 16; 36(50):15828-33. PubMed ID: 9398314 [Abstract] [Full Text] [Related]
11. Intracomplex electron transfer between ruthenium-cytochrome c derivatives and cytochrome c oxidase. Pan LP, Hibdon S, Liu RQ, Durham B, Millett F. Biochemistry; 1993 Aug 24; 32(33):8492-8. PubMed ID: 8395206 [Abstract] [Full Text] [Related]
12. The reaction of the trifluoromethylphenylcarbamylated lysine-13 derivative of horse cytochrome c with cytochrome oxidase. Smith L, Davies HC, Nava ME, Smith HT, Millett FS. Biochim Biophys Acta; 1982 Jan 18; 700(2):184-91. PubMed ID: 6275898 [Abstract] [Full Text] [Related]
13. Use of specific lysine modifications to locate the reaction site of cytochrome c with cytochrome oxidase. Smith HT, Staudenmayer N, Millett F. Biochemistry; 1977 Nov 15; 16(23):4971-4. PubMed ID: 199245 [Abstract] [Full Text] [Related]
14. Definition of cytochrome c binding domains by chemical modification: kinetics of reaction with beef mitochondrial reductase and functional organization of the respiratory chain. Speck SH, Ferguson-Miller S, Osheroff N, Margoliash E. Proc Natl Acad Sci U S A; 1979 Jan 15; 76(1):155-9. PubMed ID: 218193 [Abstract] [Full Text] [Related]
15. One of two copper atoms is not necessary for the cytochrome c oxidase activity of Pseudomonas AM 1 cytochrome aa3. Fukumori Y, Nakayama K, Yamanaka T. J Biochem; 1985 Dec 15; 98(6):1719-22. PubMed ID: 3005252 [Abstract] [Full Text] [Related]
16. Distinction between oxidizing and reducing sites of cytochrome c by chemical modification with pyridoxal phosphate. Aviram I, Schejter A. FEBS Lett; 1973 Oct 15; 36(2):174-6. PubMed ID: 4356787 [No Abstract] [Full Text] [Related]
17. Oxidation and reduction of soluble cytochrome c by membrane-bound oxidase and reductase systems. Smith L, Davies HC, Nava M. J Biol Chem; 1974 May 10; 249(9):2904-10. PubMed ID: 4364033 [No Abstract] [Full Text] [Related]
18. The rate-limiting step and nonhyperbolic kinetics in the oxidation of ferrocytochrome c catalyzed by cytochrome c oxidase. Brzezinski P, Thörnström PE, Malmström BG. FEBS Lett; 1986 Jan 01; 194(1):1-5. PubMed ID: 3000820 [Abstract] [Full Text] [Related]