These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 4361883

  • 1. Identification of primary photosynthetic processes.
    Leigh JS, Dutton PL.
    Ann N Y Acad Sci; 1973 Dec 31; 222():838-45. PubMed ID: 4361883
    [No Abstract] [Full Text] [Related]

  • 2. Cytochrome C553 and bacteriochlorophyll interaction at 77 K in chromatophores and a subchromatophore preparation from Chromatium D.
    Dutton PL, Kihara T, McCray JA, Thornber JP.
    Biochim Biophys Acta; 1971 Jan 12; 226(1):81-7. PubMed ID: 5549986
    [No Abstract] [Full Text] [Related]

  • 3. Redistribution of electric charge accompanying photosynthetic electron transport in Chromatium.
    Case GD, Parson WW.
    Biochim Biophys Acta; 1973 Apr 05; 292(3):677-84. PubMed ID: 4705448
    [No Abstract] [Full Text] [Related]

  • 4. The reaction between primary and secondary electron acceptors in bacterial photosynthesis.
    Parson WW.
    Biochim Biophys Acta; 1969 Apr 05; 189(3):384-96. PubMed ID: 5363976
    [No Abstract] [Full Text] [Related]

  • 5. Photosynthetic reaction centers and primary photochemical reactions.
    Ke B.
    Photochem Photobiol; 1974 Dec 05; 20(6):542-6. PubMed ID: 4376245
    [No Abstract] [Full Text] [Related]

  • 6. The primary electron acceptor in photosynthesis.
    Leigh JS, Dutton PL.
    Biochem Biophys Res Commun; 1972 Jan 31; 46(2):414-21. PubMed ID: 4333415
    [No Abstract] [Full Text] [Related]

  • 7. Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics.
    Leigh JS, Dutton PL.
    Biochim Biophys Acta; 1974 Jul 25; 357(1):67-77. PubMed ID: 4370313
    [No Abstract] [Full Text] [Related]

  • 8. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum.
    Halsey YD, Parson WW.
    Biochim Biophys Acta; 1974 Jun 28; 347(3):404-16. PubMed ID: 4366890
    [No Abstract] [Full Text] [Related]

  • 9. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa.
    Dutton PL.
    Biochim Biophys Acta; 1971 Jan 12; 226(1):63-80. PubMed ID: 5549985
    [No Abstract] [Full Text] [Related]

  • 10. Primary processes in photosynthesis: in situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochlorophyll.
    Dutton PL, Leight JS, Seibert M.
    Biochem Biophys Res Commun; 1972 Jan 31; 46(2):406-13. PubMed ID: 4333414
    [No Abstract] [Full Text] [Related]

  • 11. Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes.
    Parson WW.
    Biochim Biophys Acta; 1969 Jan 31; 189(3):397-403. PubMed ID: 5363977
    [No Abstract] [Full Text] [Related]

  • 12. Redox properties of the "P-836" pigment complex of Chromatium.
    Schmidt GL, Kamen MD.
    Biochim Biophys Acta; 1971 Apr 06; 234(1):70-2. PubMed ID: 5560363
    [No Abstract] [Full Text] [Related]

  • 13. Photoreduction of the long wavelength bacteriopheophytin in reaction centers and chromatophores of the photosynthetic bacterium Chromatium vinosum.
    van Grondelle R, Romijn JC, Holmes NG.
    FEBS Lett; 1976 Dec 15; 72(1):187-92. PubMed ID: 1001464
    [No Abstract] [Full Text] [Related]

  • 14. Fast membrane H+ binding in the light-activated state of Chromatium chromatophores.
    Chance B, Crofts AR, Nishimura M, Price B.
    Eur J Biochem; 1970 Apr 15; 13(2):364-74. PubMed ID: 5439938
    [No Abstract] [Full Text] [Related]

  • 15. Nature of photochemical reactions in chromatophores of Chromatium D. III. Heterogeneity of the photosynthetic units.
    Takamiya KI, Nishimura M.
    Biochim Biophys Acta; 1975 Jul 08; 396(1):93-103. PubMed ID: 167850
    [Abstract] [Full Text] [Related]

  • 16. Some effects of o-phenanthroline on electron transport in chromatophores from photosynthetic bacteria.
    Jackson JB, Cogdell RJ, Crofts AR.
    Biochim Biophys Acta; 1973 Jan 18; 292(1):218-25. PubMed ID: 4705131
    [No Abstract] [Full Text] [Related]

  • 17. A low potential photosystem in Chromatium D.
    Seibert M, Dutton PL, Devault D.
    Biochim Biophys Acta; 1971 Jan 12; 226(1):189-92. PubMed ID: 4323694
    [No Abstract] [Full Text] [Related]

  • 18. Fluorescence of bacteriochlorophyll as related to the photochemistry of chromatophores of photosynthetic bacteria.
    Suzuki Y, Takamiya A.
    Biochim Biophys Acta; 1972 Sep 20; 275(3):358-68. PubMed ID: 4627083
    [No Abstract] [Full Text] [Related]

  • 19. Electron paramagnetic resonance studies on photosynthetic bacteria. I. Properties of photo-induced EPR-signals of Chromatium D.
    Schleyer H.
    Biochim Biophys Acta; 1968 Feb 12; 153(2):427-47. PubMed ID: 4296026
    [No Abstract] [Full Text] [Related]

  • 20. Nature of the primary electron acceptor in bacterial photosynthesis.
    Ke B.
    Biochim Biophys Acta; 1969 Apr 08; 172(3):583-5. PubMed ID: 5782255
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.