These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 4365207

  • 1. Control of respiration by the mitochondrial phosphorylation state.
    Owen CS, Wilson DF.
    Arch Biochem Biophys; 1974 Apr 02; 161(2):581-91. PubMed ID: 4365207
    [No Abstract] [Full Text] [Related]

  • 2. Control of mitochondrial respiration: a quantitative evaluation of the roles of cytochrome c and oxygen.
    Wilson DF, Owen CS, Holian A.
    Arch Biochem Biophys; 1977 Aug 02; 182(2):749-62. PubMed ID: 20061
    [No Abstract] [Full Text] [Related]

  • 3. Control of mitochondrial respiration by the phosphate potential.
    Wilson DF, Owen C, Mela L, Weiner L.
    Biochem Biophys Res Commun; 1973 Jul 02; 53(1):326-33. PubMed ID: 4741551
    [No Abstract] [Full Text] [Related]

  • 4. Control of respiration in isolated mitochondria: quantitative evaluation of the dependence of respiratory rates on [ATP], [ADP], and [Pi].
    Holian A, Owen CS, Wilson DF.
    Arch Biochem Biophys; 1977 May 02; 181(1):164-71. PubMed ID: 879801
    [No Abstract] [Full Text] [Related]

  • 5. Thermodynamic relationships between the oxidation-reduction reactions and the ATP synthesis in suspensions of isolated pigeon heart mitochondria.
    Erecińska M, Veech RL, Wilson DF.
    Arch Biochem Biophys; 1974 Feb 02; 160(2):412-21. PubMed ID: 4364765
    [No Abstract] [Full Text] [Related]

  • 6. Adriamycin: energy metabolism and mitochondrial oxidations in the heart of treated rabbits.
    Ferrero ME, Ferrero E, Gaja G, Bernelli-Zazzera A.
    Biochem Pharmacol; 1976 Jan 15; 25(2):125-30. PubMed ID: 177021
    [No Abstract] [Full Text] [Related]

  • 7. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action.
    Mitchell RA, Chang BF, Huang CH, DeMaster EG.
    Biochemistry; 1971 May 25; 10(11):2049-54. PubMed ID: 4327397
    [No Abstract] [Full Text] [Related]

  • 8. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG.
    Biochem J; 1975 Mar 25; 146(3):537-47. PubMed ID: 167720
    [Abstract] [Full Text] [Related]

  • 9. What determines cardiac oxygen consumption and how is it regulated?
    van Beek JH, Tian X.
    Adv Exp Med Biol; 1996 Mar 25; 388():265-74. PubMed ID: 8798822
    [No Abstract] [Full Text] [Related]

  • 10. Thermodynamic relationships in mitochondrial oxidative phosphorylation.
    Wilson DF, Erecińska M, Dutton PL.
    Annu Rev Biophys Bioeng; 1974 Mar 25; 3(0):203-30. PubMed ID: 4153883
    [No Abstract] [Full Text] [Related]

  • 11. A novel property of mitochondrial oxidative phosphorylation.
    Wilson DF, Fairs K.
    Biochem Biophys Res Commun; 1974 Feb 04; 56(3):635-40. PubMed ID: 4363746
    [No Abstract] [Full Text] [Related]

  • 12. [Inhibition of oxidative phosphorylation by coenzyme A at the mitochondrial level in pig heart].
    Gautheron D, Godinot C, Pialoux N.
    Bull Soc Chim Biol (Paris); 1967 Feb 04; 49(5):551-67. PubMed ID: 6059793
    [No Abstract] [Full Text] [Related]

  • 13. 2,4-Dinitrophenol causes a marked increase in the apparent Km of Pi and of ADP for oxidative phosphorylation.
    Kayalar C, Rosing J, Boyer PD.
    Biochem Biophys Res Commun; 1976 Oct 04; 72(3):1153-9. PubMed ID: 985515
    [No Abstract] [Full Text] [Related]

  • 14. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP.
    Luzikov VN, Saks VA, Kupriyanov VV.
    Biochim Biophys Acta; 1971 Nov 02; 253(1):46-57. PubMed ID: 4331272
    [No Abstract] [Full Text] [Related]

  • 15. Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system.
    Hassinen IE, Hiltunen K.
    Biochim Biophys Acta; 1975 Dec 11; 408(3):319-30. PubMed ID: 172132
    [Abstract] [Full Text] [Related]

  • 16. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?
    Vuorinen KH, Ala-Rämi A, Yan Y, Ingman P, Hassinen IE.
    J Mol Cell Cardiol; 1995 Aug 11; 27(8):1581-91. PubMed ID: 8523421
    [Abstract] [Full Text] [Related]

  • 17. NAD + -induced phosphate acceptor specificity in submitochondrial systems.
    Vallin I, Lundberg P.
    Biochim Biophys Acta; 1972 Feb 28; 256(2):191-8. PubMed ID: 4335834
    [No Abstract] [Full Text] [Related]

  • 18. The apparent absolute requirement of adenosine diphosphate for the inorganic phosphate--water exchange of oxidative phosphorylation.
    Jones DH, Boyer PD.
    J Biol Chem; 1969 Nov 10; 244(21):5767-72. PubMed ID: 5350933
    [No Abstract] [Full Text] [Related]

  • 19. Influence of organic solutes on the reactions of oxidative phosphorylation.
    Conover TE.
    J Biol Chem; 1969 Jan 25; 244(2):254-9. PubMed ID: 4304300
    [No Abstract] [Full Text] [Related]

  • 20. Preservation of energy coupling in submitochondrial particles during extraction and reinsertion of cytochrome C.
    Arion WJ, Wright BJ.
    Biochem Biophys Res Commun; 1970 Aug 11; 40(3):594-9. PubMed ID: 4321657
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.