These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 4373033
1. A spin-label study of energy-coupled active transport in Escherichia coli membrane vesicles. Baldassare JJ, Robertson DE, McAfee AG, Ho C. Biochemistry; 1974 Dec 03; 13(25):5210-4. PubMed ID: 4373033 [No Abstract] [Full Text] [Related]
2. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli. Kaback HR, Barnes EM. J Biol Chem; 1971 Sep 10; 246(17):5523-31. PubMed ID: 4941946 [No Abstract] [Full Text] [Related]
3. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles. Barnes EM, Kaback HR. J Biol Chem; 1971 Sep 10; 246(17):5518-22. PubMed ID: 4330922 [No Abstract] [Full Text] [Related]
4. The role of functional sulfhydryl groups in active transport in Escherichia coli membrane vesicles. Kaback HR, Patel L. Biochemistry; 1978 May 02; 17(9):1640-6. PubMed ID: 350273 [No Abstract] [Full Text] [Related]
5. Amino acid transport and staphylococcal membrane vesicles. Short SA, Kaback HR. Ann N Y Acad Sci; 1974 Jul 31; 236(0):124-43. PubMed ID: 4371336 [No Abstract] [Full Text] [Related]
6. Mechanisms of active transport in isolated bacterial membrane vesicles. Further studies on amino acid transport in Staphylococcus aureus membrane vesicles. Short SA, Kaback HR. J Biol Chem; 1974 Jul 10; 249(13):4275-81. PubMed ID: 4853134 [No Abstract] [Full Text] [Related]
7. A spin label study of E. coli membrane vesicles. Baldassare JJ, McAfee AG, Ho C. Biochem Biophys Res Commun; 1973 Jul 17; 53(2):617-23. PubMed ID: 4352072 [No Abstract] [Full Text] [Related]
10. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. Konings WN, Barnes EM, Kaback HR. J Biol Chem; 1971 Oct 10; 246(19):5857-61. PubMed ID: 4331061 [No Abstract] [Full Text] [Related]
11. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli. Hirata H, Altendorf K, Harold FM. Proc Natl Acad Sci U S A; 1973 Jun 10; 70(6):1804-8. PubMed ID: 4578444 [Abstract] [Full Text] [Related]
12. Transient pH changes during D-lactate oxidation by membrane vesicles. Reeves JP. Biochem Biophys Res Commun; 1971 Nov 10; 45(4):931-6. PubMed ID: 4330145 [No Abstract] [Full Text] [Related]
13. The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli. Weiner JH. J Membr Biol; 1974 Nov 10; 15(1):1-14. PubMed ID: 4600804 [No Abstract] [Full Text] [Related]
14. Membrane transport as a potential target for antibiotic action. Walsh CT, Kaback HR. Ann N Y Acad Sci; 1974 May 10; 235(0):519-41. PubMed ID: 4604751 [No Abstract] [Full Text] [Related]
15. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli. Kobayashi H, Kin E, Anraku Y. J Biochem; 1974 Aug 10; 76(2):251-61. PubMed ID: 4154322 [No Abstract] [Full Text] [Related]
16. Transport of succinate in Escherichia coli. III. Biochemical and genetic studies of the mechanism of transport in membrane vesicles. Lo TC, Rayman MK, Sanwal BD. Can J Biochem; 1974 Oct 10; 52(10):854-66. PubMed ID: 4138960 [No Abstract] [Full Text] [Related]
17. Mechanisms of active transport in isolated bacterial membrane vesicles. VII. Fluorescence of 1-anilino-8-naphthalenesulfonate during D-lactate oxidation by membrane vesicles from Escherichia coli. Reeves JP, Lombardi FJ, Kaback HR. J Biol Chem; 1972 Oct 10; 247(19):6204-11. PubMed ID: 4568608 [No Abstract] [Full Text] [Related]
18. Active transport of proline in membrane preparations from Mycobacterium phlei. Hirata H, Kosmakos FC, Brodie AF. J Biol Chem; 1974 Nov 10; 249(21):6965-70. PubMed ID: 4425314 [No Abstract] [Full Text] [Related]
19. Correlations between fatty acid distribution in phospholipids and the temperature dependence of membrane physical state. Linden CD, Keith AD, Fox CF. J Supramol Struct; 1973 Nov 10; 1(6):523-34. PubMed ID: 4361046 [No Abstract] [Full Text] [Related]
20. Coupling of energy to active transport of amino acids in Escherichia coli. Simoni RD, Shallenberger MK. Proc Natl Acad Sci U S A; 1972 Sep 10; 69(9):2663-7. PubMed ID: 4341704 [Abstract] [Full Text] [Related] Page: [Next] [New Search]