These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


93 related items for PubMed ID: 4381706

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The role of a cholesta-8,14-dien-3-beta-ol system in cholesterol biosynthesis.
    Akhtar M, Watkinson IA, Rahimtula AD, Wilton DC, Munday KA.
    Biochem J; 1969 Mar; 111(5):757-61. PubMed ID: 5783476
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Inhibition of lipid biosynthesis.
    Dempsey ME.
    Ann N Y Acad Sci; 1968 Mar 26; 148(3):631-46. PubMed ID: 4385358
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Studies on the control of cholesterol biosynthesis: the adenosine 3':5'-cyclic monophosphate-dependent accumulation of a steroid carboxylic acid.
    Bloxham DP, Akhtar M.
    Biochem J; 1971 Jun 26; 123(2):275-8. PubMed ID: 4331371
    [No Abstract] [Full Text] [Related]

  • 8. A novel olefinic rearrangement. The enzymic conversion of cholesta-7,9-dien-3 -ol into cholesta-8,14-dien-3 -ol.
    Akhtar M, Freeman CW, Rahimtula AD, Wilton DC.
    Biochem J; 1972 Sep 26; 129(2):225-9. PubMed ID: 4404936
    [Abstract] [Full Text] [Related]

  • 9. The biological conversion of 7-dehydrocholesterol into cholesterol and comments on the reduction of double bonds.
    Wilton DC, Munday KA, Skinner SJ, Akhtar M.
    Biochem J; 1968 Feb 26; 106(4):803-10. PubMed ID: 4384136
    [Abstract] [Full Text] [Related]

  • 10. The formation and reduction of the 14,15-double bond in cholesterol biosynthesis.
    Watkinson IA, Wilton DC, Munday KA, Akhtar M.
    Biochem J; 1971 Jan 26; 121(1):131-7. PubMed ID: 4398958
    [Abstract] [Full Text] [Related]

  • 11. Impairment of hepatic cholesterol synthesis from squalene and the function of hepatic sterol carrier protein system by ageing.
    Takeuchi N, Koga M, Yamamura Y, Tanaka F, Yamaguchi Y, Uchida K.
    Exp Gerontol; 1978 Jan 26; 13(1-2):1-7. PubMed ID: 639893
    [No Abstract] [Full Text] [Related]

  • 12. The stereochemistry of hydrogen transfer from reduced nicotinamide-adenine dinucleotide phosphate in the reduction of ethylenic linkages during cholesterol biosynthesis.
    Wilton DC, Watkinson IA, Akhtar M.
    Biochem J; 1970 Oct 26; 119(4):673-5. PubMed ID: 4395428
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Inhibition of cholesterol biosynthesis by carbon monoxide: accumulation of lanosterol and 24,25-dihydrolanosterol.
    Gibbons GF, Mitropoulos KA.
    Biochem J; 1972 Mar 26; 127(1):315-7. PubMed ID: 5073750
    [No Abstract] [Full Text] [Related]

  • 15. Squalene and sterol carrier protein: structural properties, lipid-binding, and function in cholesterol biosynthesis.
    Ritter MC, Dempsey ME.
    Proc Natl Acad Sci U S A; 1973 Jan 26; 70(1):265-9. PubMed ID: 4509660
    [Abstract] [Full Text] [Related]

  • 16. Artificial substrates in squalene and sterol biosynthesis.
    Polito A, Popják G, Parker T.
    J Biol Chem; 1972 Jun 10; 247(11):3464-70. PubMed ID: 4337856
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Chemical synthesis of cholesta-5,7,24-trien-3-beta-ol and demonstration of its conversion to cholesterol in the rat.
    Scallen TJ.
    Biochem Biophys Res Commun; 1965 Oct 26; 21(2):149-55. PubMed ID: 5863858
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.