These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
218 related items for PubMed ID: 4384457
1. Light-induced electron transefer in Chromatium strain D. 3. Photophosphorylation by Chromatium chromatophores. Cusanovich MA, Kamen MD. Biochim Biophys Acta; 1968 Feb 12; 153(2):418-26. PubMed ID: 4384457 [No Abstract] [Full Text] [Related]
2. Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores. Cusanovich MA, Bartsch RG, Kamen MD. Biochim Biophys Acta; 1968 Feb 12; 153(2):397-417. PubMed ID: 4296025 [No Abstract] [Full Text] [Related]
3. Cytochrome b and photosynthetic sulfur bacteria. Knaff DB, Buchanan BB. Biochim Biophys Acta; 1975 Mar 20; 376(3):549-60. PubMed ID: 1125222 [Abstract] [Full Text] [Related]
9. Redistribution of electric charge accompanying photosynthetic electron transport in Chromatium. Case GD, Parson WW. Biochim Biophys Acta; 1973 Apr 05; 292(3):677-84. PubMed ID: 4705448 [No Abstract] [Full Text] [Related]
10. Nature of the primary electron acceptor in bacterial photosynthesis. Ke B. Biochim Biophys Acta; 1969 Apr 08; 172(3):583-5. PubMed ID: 5782255 [No Abstract] [Full Text] [Related]
11. Some effects of o-phenanthroline on electron transport in chromatophores from photosynthetic bacteria. Jackson JB, Cogdell RJ, Crofts AR. Biochim Biophys Acta; 1973 Jan 18; 292(1):218-25. PubMed ID: 4705131 [No Abstract] [Full Text] [Related]
12. Fast membrane H+ binding in the light-activated state of Chromatium chromatophores. Chance B, Crofts AR, Nishimura M, Price B. Eur J Biochem; 1970 Apr 18; 13(2):364-74. PubMed ID: 5439938 [No Abstract] [Full Text] [Related]
13. A low potential photosystem in Chromatium D. Seibert M, Dutton PL, Devault D. Biochim Biophys Acta; 1971 Jan 12; 226(1):189-92. PubMed ID: 4323694 [No Abstract] [Full Text] [Related]
14. Photoreduction of the long wavelength bacteriopheophytin in reaction centers and chromatophores of the photosynthetic bacterium Chromatium vinosum. van Grondelle R, Romijn JC, Holmes NG. FEBS Lett; 1976 Dec 15; 72(1):187-92. PubMed ID: 1001464 [No Abstract] [Full Text] [Related]
15. Dependency on environmental redox potential of photophosphorylation in Rhodopseudomonas spheroides. Culbert-Runquist JA, Hadsell RM, Loach PA. Biochemistry; 1973 Aug 28; 12(18):3508-14. PubMed ID: 4542403 [No Abstract] [Full Text] [Related]
16. Nature of photochemical reactions in chromatophores of Chromatium D. III. Heterogeneity of the photosynthetic units. Takamiya KI, Nishimura M. Biochim Biophys Acta; 1975 Jul 08; 396(1):93-103. PubMed ID: 167850 [Abstract] [Full Text] [Related]
18. The reaction between primary and secondary electron acceptors in bacterial photosynthesis. Parson WW. Biochim Biophys Acta; 1969 Jul 08; 189(3):384-96. PubMed ID: 5363976 [No Abstract] [Full Text] [Related]
19. Regulation of electron transfer in Chromatium vinosum chromatophores by intravesicular H+ concentration. Hashimoto K, Nishimura M. J Biochem; 1979 Jan 08; 85(1):57-64. PubMed ID: 33164 [No Abstract] [Full Text] [Related]
20. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa. Dutton PL. Biochim Biophys Acta; 1971 Jan 12; 226(1):63-80. PubMed ID: 5549985 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]