These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


112 related items for PubMed ID: 4387190

  • 1. Oxidative decarboxylation of retinoic acid in microsomes of rat liver and kidney.
    Roberts AB, DeLuca HF.
    J Lipid Res; 1968 Jul; 9(4):501-8. PubMed ID: 4387190
    [Abstract] [Full Text] [Related]

  • 2. Decarboxylation of retinoic acid in tissue slices from rat kidney and liver.
    Roberts AB, De Luca HF.
    Arch Biochem Biophys; 1968 Feb; 123(2):279-85. PubMed ID: 5642598
    [No Abstract] [Full Text] [Related]

  • 3. The effect of DPPD on the decarboxylation of retinoic acid in vitro and in vivo.
    Roberts AB, Deluca HF.
    Arch Biochem Biophys; 1969 Jan; 129(1):290-5. PubMed ID: 5762969
    [No Abstract] [Full Text] [Related]

  • 4. Oxidation of 7-dehydrocholesterol by a mouse liver microsomal system dependent on reduced pyridine nucleotides.
    Kandutsch AA.
    J Lipid Res; 1966 Sep; 7(5):603-11. PubMed ID: 4381968
    [Abstract] [Full Text] [Related]

  • 5. Lipid peroxide formation in microsomes. General considerations.
    Wills ED.
    Biochem J; 1969 Jun; 113(2):315-24. PubMed ID: 4390101
    [Abstract] [Full Text] [Related]

  • 6. Fatty acid hydroxylation in rat kidney cortex microsomes.
    Ellin A, Orrenius S.
    Mol Cell Biochem; 1975 Aug 30; 8(2):69-79. PubMed ID: 241011
    [Abstract] [Full Text] [Related]

  • 7. Biosynthesis of beta-glucuronides of retinol and of retinoic acid in vivo and in vitro.
    Lippel K, Olson JA.
    J Lipid Res; 1968 Mar 30; 9(2):168-75. PubMed ID: 4295866
    [Abstract] [Full Text] [Related]

  • 8. Comparison of fatty acid alpha-oxidation by rat hepatocytes and by liver microsomes fortified with NADPH, Fe3+ and phosphate.
    Huang S, Van Veldhoven PP, Asselberghs S, Eyssen HJ, de Hoffmann E, Mannaerts GP.
    Lipids; 1994 Oct 30; 29(10):671-8. PubMed ID: 7861933
    [Abstract] [Full Text] [Related]

  • 9. Pathways of retinoic acid and retinol metabolism.
    DeLuca HF, Roberts AB.
    Am J Clin Nutr; 1969 Jul 30; 22(7):945-52. PubMed ID: 5797063
    [No Abstract] [Full Text] [Related]

  • 10. Studies on the in vivo metabolism of retinoic acid in the rat.
    Geison RL, Johnson BC.
    Lipids; 1970 Apr 30; 5(4):371-8. PubMed ID: 5447009
    [No Abstract] [Full Text] [Related]

  • 11. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: catalysis of all-trans-retinol oxidation by human P-450 cytochromes.
    Chen H, Howald WN, Juchau MR.
    Drug Metab Dispos; 2000 Mar 30; 28(3):315-22. PubMed ID: 10681376
    [Abstract] [Full Text] [Related]

  • 12. The inhibitory effects in vitro of phenothiazines and other drugs on lipid-peroxidation systems in rat liver microsomes, and their relationship to the liver necrosis produced by carbon tetrachloride.
    Slater TF.
    Biochem J; 1968 Jan 30; 106(1):155-60. PubMed ID: 4388686
    [Abstract] [Full Text] [Related]

  • 13. Cytochrome P 450K of rat kidney cortex microsomes: its involvement in fatty acid - and ( -1)-hydroxylation.
    Ellin A, Jakobsson SV, Schenkman JB, Orrenius S.
    Arch Biochem Biophys; 1972 May 30; 150(1):64-71. PubMed ID: 4402154
    [No Abstract] [Full Text] [Related]

  • 14. Lipid peroxide formation in microsomes. The role of non-haem iron.
    Wills ED.
    Biochem J; 1969 Jun 30; 113(2):325-32. PubMed ID: 4390102
    [Abstract] [Full Text] [Related]

  • 15. The nature of NADPH-dependent lipid peroxidation in rat kidney microsomes.
    Yonaha M, Ohbayashi Y.
    Res Commun Chem Pathol Pharmacol; 1980 Oct 30; 30(1):113-22. PubMed ID: 7433762
    [Abstract] [Full Text] [Related]

  • 16. In vitro conversion of erucic acid by microsomes and mitochondria from liver, kidneys and heart of rats.
    Clouet P, Bezard J.
    Lipids; 1979 Mar 30; 14(3):268-73. PubMed ID: 449629
    [Abstract] [Full Text] [Related]

  • 17. A microsomal membrane component associated with iron reduction in NADPH-supported lipid peroxidation.
    Tampo Y, Yonaha M.
    Lipids; 1995 Jan 30; 30(1):55-62. PubMed ID: 7760689
    [Abstract] [Full Text] [Related]

  • 18. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW, Feierman DE, Cederbaum AI.
    Arch Biochem Biophys; 1984 Jul 30; 232(1):378-90. PubMed ID: 6331321
    [Abstract] [Full Text] [Related]

  • 19. Microsomes convert retinol and retinal into retinoic acid and interfere in the conversions catalyzed by cytosol.
    Napoli JL, Race KR.
    Biochim Biophys Acta; 1990 May 16; 1034(2):228-32. PubMed ID: 2354194
    [Abstract] [Full Text] [Related]

  • 20. Lipid peroxide formation in microsomes. Relationship of hydroxylation to lipid peroxide formation.
    Wills ED.
    Biochem J; 1969 Jun 16; 113(2):333-41. PubMed ID: 4390103
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.