These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 43897

  • 1. The shape of red blood cells as a function of membrane potential and temperature.
    Glaser R.
    J Membr Biol; 1979 Dec 31; 51(3-4):217-28. PubMed ID: 43897
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Low pH induced shape changes and vesiculation of human erythrocytes.
    Gros M, Vrhovec S, Brumen M, Svetina S, Zeks B.
    Gen Physiol Biophys; 1996 Apr 31; 15(2):145-63. PubMed ID: 8899418
    [Abstract] [Full Text] [Related]

  • 4. The influence of valinomycin induced membrane potential on erythrocyte shape.
    Glaser R, Gengnagel C, Donath J.
    Biomed Biochim Acta; 1991 Apr 31; 50(7):869-77. PubMed ID: 1759965
    [Abstract] [Full Text] [Related]

  • 5. Membrane potential and human erythrocyte shape.
    Gedde MM, Huestis WH.
    Biophys J; 1997 Mar 31; 72(3):1220-33. PubMed ID: 9138568
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Shape transformations induced by amphiphiles in erythrocytes.
    Isomaa B, Hägerstrand H, Paatero G.
    Biochim Biophys Acta; 1987 May 12; 899(1):93-103. PubMed ID: 3567196
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Further evidence for a membrane potential-dependent shape transformation of the human erythrocyte membrane.
    Müller P, Herrmann A, Glaser R.
    Biosci Rep; 1986 Nov 12; 6(11):999-1006. PubMed ID: 3580524
    [Abstract] [Full Text] [Related]

  • 10. Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems.
    Motais R, Guizouarn H, Garcia-Romeu F.
    Biochim Biophys Acta; 1991 Oct 10; 1075(2):169-80. PubMed ID: 1657175
    [Abstract] [Full Text] [Related]

  • 11. Amphotericin B induced structural changes of the erythrocyte membrane.
    Meyer HW.
    Exp Pathol (Jena); 1979 Oct 10; 17(7-8):429-33. PubMed ID: 41735
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Nystatin- and amphotericin B-induced structural alterations of the erythrocyte membrane: importance of reduced ionic strength.
    Meyer HW, Richter W, Winkelmann H.
    Exp Pathol; 1983 Oct 10; 24(2-3):163-6. PubMed ID: 6685655
    [Abstract] [Full Text] [Related]

  • 14. Increased permeability of human erythrocytes induced by amphotericin B.
    Butler WT, Cotlove E.
    J Infect Dis; 1971 Apr 10; 123(4):341-50. PubMed ID: 5110737
    [No Abstract] [Full Text] [Related]

  • 15. Shape transformation of erythrocyte ghosts depends on ion concentrations.
    Herrmann A, Müller P, Glaser R.
    Biosci Rep; 1985 May 10; 5(5):417-23. PubMed ID: 4027357
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Synergistic incorporation of daunorubicin in erythrocytes in the presence of polyene antibiotics. Role of the membrane potential.
    Henry N, Bolard J.
    Biochim Biophys Acta; 1986 Jan 16; 854(1):84-92. PubMed ID: 3942720
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.