These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Contribution to control of mitochondrial oxidative phosphorylation by supplement of reducing equivalents. Kunz W, Gellerich FN, Schild L. Biochem Med Metab Biol; 1994 Jun; 52(1):65-75. PubMed ID: 7917469 [Abstract] [Full Text] [Related]
12. Isocitrate oxidation in dog heart mitochondria under anoxic conditions. Guillem-Tatay C, Román A, Such L, Viña J. Rev Esp Fisiol; 1983 Dec; 39(4):395-7. PubMed ID: 6675091 [Abstract] [Full Text] [Related]
13. [Changes in the activities of NAD- and NADP-specific isocitrate dehydrogenases in the brain and liver during the postembryonic development of animals]. Prokhorova MI, Putilina FE, Eshchenko ND. Vopr Biokhim Mozga; 1974 Dec; 9():211-8. PubMed ID: 4157232 [Abstract] [Full Text] [Related]
15. A continuous recording technique for the measurement of carbon dioxide, and its application to mitochondrial oxidation and decarboxylation reactions. Nicholls DG, Shepherd D, Garland PB. Biochem J; 1967 Jun; 103(3):677-91. PubMed ID: 4292835 [Abstract] [Full Text] [Related]
17. Inhibition of the oxidation of glutamate and isocitrate in liver mitochondria at a specific NADP+-reducing site. Lin DC, Kun E. Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3450-3. PubMed ID: 4148701 [Abstract] [Full Text] [Related]
18. Control of nicotinamide nucleotide-linked oxidoreductions in rat-liver mitochondria. Tager JM, Papa S, de Haan EJ, D'Aloya R, Quagliariello E. Biochim Biophys Acta; 1969 Jan 14; 172(1):7-19. PubMed ID: 4178849 [No Abstract] [Full Text] [Related]
20. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. McCormack JG. Biochem J; 1985 Nov 01; 231(3):581-95. PubMed ID: 3000355 [Abstract] [Full Text] [Related] Page: [Next] [New Search]