These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 440971
1. A conformational study of nucleic acid phosphate ester bonds using phosphorus-31 nuclear magnetic resonance. Haasnoot CA, Altona C. Nucleic Acids Res; 1979 Mar; 6(3):1135-49. PubMed ID: 440971 [Abstract] [Full Text] [Related]
2. Interrelation between glycosidic torsion, sugar pucker, and backbone conformation in 5'-beta-nucleotides. A 1H and 31P fast Fourier transform nuclear magnetic resonance investigation of the conformation of 8-aza-5'-beta-adenosine monophosphate and 8-aza-5'-beta-guanosine monophosphate. Lee CH, Evans FE, Sarma RH. J Biol Chem; 1975 Feb 25; 250(4):1290-6. PubMed ID: 1112806 [Abstract] [Full Text] [Related]
3. A conformational study of adenylyl-(3',5')-adenosine and adenylyl-(2',5')-adenosine in aqueous solution by carbon-13 magnetic resonance spectroscopy. Schleich T, Cross BP, Smith IC. Nucleic Acids Res; 1976 Feb 25; 3(2):355-70. PubMed ID: 1257051 [Abstract] [Full Text] [Related]
6. Influence of the 2'-hydroxyl group and of 6-N-methylation on the conformation of adenine dinucleoside monophosphates in solution. A nuclear magnetic resonance and circular dichroism study. Olsthoorn CS, Doornbos J, de Leeuw HP, Altona C. Eur J Biochem; 1982 Jul 25; 125(2):367-82. PubMed ID: 7117238 [Abstract] [Full Text] [Related]
7. Circular dichroism studies of 6-N-methylated adenylyladenosine and adenylyluridine and their parent compounds. Thermodynamics of stacking. Olsthoorn CS, Haasnoot CA, Altona C. Eur J Biochem; 1980 May 25; 106(1):85-95. PubMed ID: 7341235 [Abstract] [Full Text] [Related]
8. Interactions of tyrosine and tyramine with nucleic acids and their components. Fluorescence, nuclear magnetic resonance and circular dichroism studies. Hélène C, Montenay-Garestier T, Dimicoli JL. Biochim Biophys Acta; 1971 Dec 30; 254(3):349-65. PubMed ID: 5167622 [No Abstract] [Full Text] [Related]
9. [Circular dichroism study of the conformational situation in an aqueous solution of adenylyl-(3'--5')-adenosine and its conformationally mobile analogs]. Tychinskaia LIu, Gottikh BP, Kritsyn AM, Lysov IuP, Shchelkina AK. Mol Biol (Mosk); 1980 Dec 30; 14(5):1159-72. PubMed ID: 7421822 [Abstract] [Full Text] [Related]
10. A model conformational study of nucleic acid phosphate ester bonds. The torsional potential of dimethyl phosphate monoanion. Newton MD. J Am Chem Soc; 1973 Jan 10; 95(1):256-8. PubMed ID: 4682894 [No Abstract] [Full Text] [Related]
11. On the conformational dependence of the proton chemical shifts in nucleosides and nucleotides. III. Proton chemical shifts of 5'-nucleotides as a function of different conformational parameters. Prado FR, Giessner-Prettre C, Pullman B. J Theor Biol; 1978 Sep 21; 74(2):259-77. PubMed ID: 713576 [No Abstract] [Full Text] [Related]
13. Conformational characteristics of the trinucleoside diphosphate dApdApdA and its constituents from nuclear magnetic resonance and circular dichroism studies. Extrapolation to the stacked conformers. Olsthoorn CS, Bostelaar LJ, Van Boom JH, Altona C. Eur J Biochem; 1980 Nov 21; 112(1):95-110. PubMed ID: 6935052 [Abstract] [Full Text] [Related]
14. A comparative proton magnetic resonance conformational study of the tRNA "wobble" nucleosides 5-carboxymethyl-, 5-methoxycarbonylmethyl-, and 5-carbamoylmethyl-uridine. Lipnick RL, Fissekis JD. Can J Biochem; 1980 Dec 21; 58(12):1355-8. PubMed ID: 6265045 [Abstract] [Full Text] [Related]
15. Conformational stability in dinucleoside phosphate crystals. Semiempirical potential energy calculations for uridylyl-3'-5'-adenosine monophosphate (UpA) and guanylyl-3',5'-cytidine monophosphate (GpC). Broyde SB, Stellman SD, Hingerty B, Langridge R. Biopolymers; 1974 Jun 21; 13(6):1243-59. PubMed ID: 4851147 [No Abstract] [Full Text] [Related]
16. Proton and phosphorus-31 nuclear magnetic resonance study on the stabilization of the anti conformation about the glycosyl bond of 8-alkylamino adenyl nucleotides. Evans FE, Wright JM. Biochemistry; 1980 May 13; 19(10):2113-7. PubMed ID: 7378350 [No Abstract] [Full Text] [Related]
17. 31P chemical shift tensors for canonical and non-canonical conformations of nucleic acids: a DFT study and NMR implications. Precechtelová J, Padrta P, Munzarová ML, Sklenár V. J Phys Chem B; 2008 Mar 20; 112(11):3470-8. PubMed ID: 18298109 [Abstract] [Full Text] [Related]
18. Nuclear-magnetic-resonance studies of 5'-ribonucleotide and 5'-deoxyribonucleotide conformations in solution using the lanthanide probe method. Dobson CM, Geraldes CF, Ratcliffe G, Williams RJ. Eur J Biochem; 1978 Jul 17; 88(1):259-66. PubMed ID: 27362 [Abstract] [Full Text] [Related]
19. Phosphorus-31 nuclear magnetic resonance of enzyme complexes: bound ligand structure, dynamics, and environment. Gorenstein DG. Methods Enzymol; 1989 Jul 17; 177():295-316. PubMed ID: 2607984 [No Abstract] [Full Text] [Related]
20. The conformations of adenosine mononculeotide in water and dimethylsulfoxide. Barry CD, Glasel JA, North AC, Williams RJ, Xavier AV. Biochem Biophys Res Commun; 1972 Apr 14; 47(1):166-71. PubMed ID: 5027127 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]