These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
319 related items for PubMed ID: 4413344
1. Examination of the competitive effect of alkali ions in the K+, Rb+ and Cs+ transport of rat erythrocytes. Györgyi S, Blaskó K. Acta Biochim Biophys Acad Sci Hung; 1974; 9(1-2):97-105. PubMed ID: 4413344 [No Abstract] [Full Text] [Related]
2. Application a three compartment tracerkinetic model for comparing the K+, Rb+ and Cs+ transport of erythrocytes. Györgyi S, Kanyár B. Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):359-65. PubMed ID: 4671876 [No Abstract] [Full Text] [Related]
3. Alkali ion transport of primycin modified erythrocytes. Blaskó K, Györgyi S. Acta Biol Med Ger; 1981; 40(4-5):465-9. PubMed ID: 7315092 [Abstract] [Full Text] [Related]
4. Role of intracellular and extracellular cationic composition in immune lysis of mammalian erythrocytes. Dalmasso AP, Giavedoni EB, Lelchuk R, DeBracco MM. J Immunol; 1973 Aug; 111(2):527-35. PubMed ID: 4717992 [No Abstract] [Full Text] [Related]
6. The influence of the extracellular counter-ion on the sodium-dependent, ouabain-uninhibited sodium efflux from human erythrocytes. Dunn MJ, Grant R. Biochim Biophys Acta; 1974 May 30; 352(1):117-21. PubMed ID: 4854899 [No Abstract] [Full Text] [Related]
7. Active transport of Rb86 in human red cells and rat brain slices. Bernstein JC, Israel Y. J Pharmacol Exp Ther; 1970 Aug 30; 174(2):323-9. PubMed ID: 5451367 [No Abstract] [Full Text] [Related]
8. pH dependence of rubidium influx in human red blood cells. Beaugé LA, Adragna N. Biochim Biophys Acta; 1974 Jun 29; 352(3):441-7. PubMed ID: 4841674 [No Abstract] [Full Text] [Related]
9. Interaction of thallous ions with the cation transport mechanism in erythrocytes. Skulskii IA, Manninen V, Järnefelt J. Biochim Biophys Acta; 1973 Mar 29; 298(3):702-9. PubMed ID: 4268625 [No Abstract] [Full Text] [Related]
10. Turnover numbers for ionophore-catalyzed cation transport across the mitochondrial membrane. Haynes DH, Wiens T, Pressman BC. J Membr Biol; 1974 Mar 29; 18(1):23-38. PubMed ID: 4855276 [No Abstract] [Full Text] [Related]
11. Distributions of Li+, Na+ K+, Rb+, and Cs+ tracer ions in erythrocytes at 38 degrees C in relation to entry rates of these ions into cells at 0 degree C. Salminen S, Ekman A, Rastas J. Eur Biophys J; 2000 Mar 29; 29(7):464-71. PubMed ID: 11156287 [Abstract] [Full Text] [Related]
12. Comparative studies on primycin and gramicidin induced cation transport changes in human erythrocytes. Blaskó K, Schagina LV, Malev VV, Sugár IP, Györgyi S. Acta Biochim Biophys Acad Sci Hung; 1984 Mar 29; 19(3-4):289-98. PubMed ID: 6085854 [Abstract] [Full Text] [Related]
13. Effect of chemical mediators on the K+-efflux, Ca2+-uptake and 32P-incorporation of erythrocytes. Szász I. Acta Biochim Biophys Acad Sci Hung; 1972 Mar 29; 7(4):335-9. PubMed ID: 4368611 [No Abstract] [Full Text] [Related]
14. [Experimental electrocardiographic studies, in the dog, on the effects of alkali ions (Li+, Na+, K+, Rb+, Cs+)]. Viña J, Bellido J, Morato F. Z Biol; 1966 Feb 29; 115(3):183-93. PubMed ID: 5915875 [No Abstract] [Full Text] [Related]
15. The concentration dependence of active potassium transport in the human red blood cell. Sachs JR, Welt LG. J Clin Invest; 1967 Jan 29; 46(1):65-76. PubMed ID: 6018751 [Abstract] [Full Text] [Related]
16. Thallium and rubidium permeability of human and rat erythrocyte membrane. Skulskii IA, Manninen V, Glasunov VV. Gen Physiol Biophys; 1990 Feb 29; 9(1):39-44. PubMed ID: 2311912 [Abstract] [Full Text] [Related]
17. Potassium pores of nerve and muscle membranes. Armstrong CM. Membranes; 1975 Feb 29; 3():325-58. PubMed ID: 53775 [No Abstract] [Full Text] [Related]
18. Effects of extracellular cations and ouabain on catecholamine-stimulated sodium and potassium fluxes in turkey erythrocytes. Gardner JD, Kiino DR, Jow N, Aurbach GD. J Biol Chem; 1975 Feb 25; 250(4):1164-75. PubMed ID: 1112799 [Abstract] [Full Text] [Related]
19. Anomalous transport kinetics and the glucose carrier hypothesis. Regen DM, Tarpley HL. Biochim Biophys Acta; 1974 Mar 15; 339(2):218-33. PubMed ID: 4827852 [No Abstract] [Full Text] [Related]
20. Rapid exchange of cellular K+, Rb+, and Cs+ and its relation to the resting potential of guinea pig papillary muscle cells. Edelmann L, Edelmann H, Baldauf JH. Physiol Chem Phys; 1974 Mar 15; 6(5):429-44. PubMed ID: 4449897 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]