These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 44314
41. Release of autolytic enzyme from Streptococcus, faecium cell walls by treatment with dilute alkali. Cornett JB, Johnson CA, Shockman GD. J Bacteriol; 1979 Jun; 138(3):699-704. PubMed ID: 110765 [Abstract] [Full Text] [Related]
42. Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Manjula K, Podile AR. Indian J Exp Biol; 2005 Oct; 43(10):892-6. PubMed ID: 16235723 [Abstract] [Full Text] [Related]
43. Lysis of intact yeast cells and isolated cell walls by an inducible enzyme system of Arthrobacter GJM-1. Vrsanská M, Krátký Z, Biely P. Z Allg Mikrobiol; 1977 Oct; 17(5):391-402. PubMed ID: 22164 [Abstract] [Full Text] [Related]
44. Expression of germination-related enzymes, CspA, CspB, CspC, SleC, and SleM, of Clostridium perfringens S40 in the mother cell compartment of sporulating cells. Masayama A, Hamasaki K, Urakami K, Shimamoto S, Kato S, Makino S, Yoshimura T, Moriyama M, Moriyama R. Genes Genet Syst; 2006 Aug; 81(4):227-34. PubMed ID: 17038794 [Abstract] [Full Text] [Related]
45. Extraction of spore-lytic enzyme from Clostridium perfringens spores. Gombas DE, Labbe RG. J Gen Microbiol; 1981 Sep; 126(1):37-44. PubMed ID: 6278055 [Abstract] [Full Text] [Related]
46. Localization of germination-specific spore-lytic enzymes in Clostridium perfringens S40 spores detected by immunoelectron microscopy. Miyata S, Kozuka S, Yasuda Y, Chen Y, Moriyama R, Tochikubo K, Makino S. FEMS Microbiol Lett; 1997 Jul 15; 152(2):243-7. PubMed ID: 9231416 [Abstract] [Full Text] [Related]
47. Insights into the catalytic mechanism of N-acetylglucosaminidase glycoside hydrolase from Bacillus subtilis: a QM/MM study. Su H, Sheng X, Liu Y. Org Biomol Chem; 2016 Apr 07; 14(13):3432-42. PubMed ID: 26963691 [Abstract] [Full Text] [Related]
48. A clostridial endo-beta-galactosidase that cleaves both blood group A and B glycotopes: the first member of a new glycoside hydrolase family, GH98. Anderson KM, Ashida H, Maskos K, Dell A, Li SC, Li YT. J Biol Chem; 2005 Mar 04; 280(9):7720-8. PubMed ID: 15618227 [Abstract] [Full Text] [Related]
50. Purification and properties of spore-lytic enzymes from Clostridium perfringens type A spores. Gombas DE, Labbe RG. J Gen Microbiol; 1985 Jun 04; 131(6):1487-96. PubMed ID: 2864386 [Abstract] [Full Text] [Related]
51. Characterization of two different endo-alpha-N-acetylgalactosaminidases from probiotic and pathogenic enterobacteria, Bifidobacterium longum and Clostridium perfringens. Ashida H, Maki R, Ozawa H, Tani Y, Kiyohara M, Fujita M, Imamura A, Ishida H, Kiso M, Yamamoto K. Glycobiology; 2008 Sep 04; 18(9):727-34. PubMed ID: 18559962 [Abstract] [Full Text] [Related]
52. Clostridium perfringens--specific lysin. Nakamura S, Okada I, Mizuno J, Nishida S. Can J Microbiol; 1977 May 04; 23(5):601-6. PubMed ID: 17459 [Abstract] [Full Text] [Related]
53. Germination-specific cortex-lytic enzymes from Clostridium perfringens S40 spores: time of synthesis, precursor structure and regulation of enzymatic activity. Urakami K, Miyata S, Moriyama R, Sugimoto K, Makino S. FEMS Microbiol Lett; 1999 Apr 15; 173(2):467-73. PubMed ID: 10227176 [Abstract] [Full Text] [Related]
54. Substrate specificity and some physicochemical properties of autolytic enzymes of the bacterium Lysobacter sp. XL 1. Tsfasman IM, Sitkin BV, Lysanskaya VY, Stepnaya OA, Kulaev IS. Biochemistry (Mosc); 2007 Jul 15; 72(7):760-5. PubMed ID: 17680768 [Abstract] [Full Text] [Related]
55. The substrate specificities of endo-beta-N-acetylglucosaminidases CII and H. Tai T, Yamashita K, Kobata A. Biochem Biophys Res Commun; 1977 Sep 09; 78(1):434-41. PubMed ID: 199169 [No Abstract] [Full Text] [Related]
56. Autolytic enzyme system of Clostridium botulinum. II. Mode of action of autolytic enzymes in Clostridium botulinum type A. Takumi K, Kawata T, Hisatsune K. Jpn J Microbiol; 1971 Mar 09; 15(2):131-41. PubMed ID: 4930808 [No Abstract] [Full Text] [Related]
57. Basis for the susceptibility of several algae to microbial decomposition. Gunnison D, Alexander M. Can J Microbiol; 1975 May 09; 21(5):619-28. PubMed ID: 1125856 [Abstract] [Full Text] [Related]
58. Portrait of an enzyme, a complete structural analysis of a multimodular {beta}-N-acetylglucosaminidase from Clostridium perfringens. Ficko-Blean E, Gregg KJ, Adams JJ, Hehemann JH, Czjzek M, Smith SP, Boraston AB. J Biol Chem; 2009 Apr 10; 284(15):9876-84. PubMed ID: 19193644 [Abstract] [Full Text] [Related]
59. Role of N-acetylglucosaminidase and N-acetylmuramidase activities in Enterococcus faecalis peptidoglycan metabolism. Mesnage S, Chau F, Dubost L, Arthur M. J Biol Chem; 2008 Jul 11; 283(28):19845-53. PubMed ID: 18490448 [Abstract] [Full Text] [Related]
60. Structural characterization of wall and lipidated polysaccharides from Clostridium perfringens ATCC 13124. Vinogradov E, Aubry A, Logan SM. Carbohydr Res; 2017 Aug 07; 448():88-94. PubMed ID: 28628892 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]