These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
127 related items for PubMed ID: 4514303
1. Membrane intercalated particles in human erythrocyte ghosts: sites of preferred passage of water molecules at low temperature. Pinto da Silva P. Proc Natl Acad Sci U S A; 1973 May; 70(5):1339-43. PubMed ID: 4514303 [Abstract] [Full Text] [Related]
2. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. Pinto da Silva P. J Cell Biol; 1972 Jun; 53(3):777-87. PubMed ID: 4554989 [Abstract] [Full Text] [Related]
3. Anionic sites on the membrane intercalated particles of human erythrocyte ghost membranes. Freeze-etch localization. Pinto da Silva P, Fudenberg HH. Exp Cell Res; 1973 Sep; 81(1):127-38. PubMed ID: 4757417 [No Abstract] [Full Text] [Related]
4. Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes. Silva PP, Nicolson GL. Biochim Biophys Acta; 1974 Sep 23; 363(3):311-9. PubMed ID: 4462620 [No Abstract] [Full Text] [Related]
5. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. Elgsaeter A, Branton D. J Cell Biol; 1974 Dec 23; 63(3):1018-36. PubMed ID: 4215819 [Abstract] [Full Text] [Related]
7. The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles. Tillack TW, Scott RE, Marchesi VT. J Exp Med; 1972 Jun 01; 135(6):1209-27. PubMed ID: 5025437 [Abstract] [Full Text] [Related]
11. [Studies on the Concanavalin A-receptors of rabbit erythrocytes and of erythyrocyte shadows using immunoelectron microscopy]. Roth J, Meyer HW, Wagner M. Blut; 1975 Jan 01; 30(1):31-8. PubMed ID: 1089436 [Abstract] [Full Text] [Related]
12. Association of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intramembranous particles. Segrest JP, Gulik-Krzywicki T, Sardet C. Proc Natl Acad Sci U S A; 1974 Aug 01; 71(8):3294-8. PubMed ID: 4528433 [Abstract] [Full Text] [Related]
14. [The arrangement of membrane proteins. Studies of erythrocyte-ghosts by freeze-etching]. Meyer HW, Winkelmann H. Protoplasma; 1972 Aug 01; 75(3):255-84. PubMed ID: 4628477 [No Abstract] [Full Text] [Related]
15. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability. Lux SE, John KM, Ukena TE. J Clin Invest; 1978 Mar 01; 61(3):815-27. PubMed ID: 25286 [Abstract] [Full Text] [Related]
16. The fluid mosaic model of the structure of cell membranes. Singer SJ, Nicolson GL. Science; 1972 Feb 18; 175(4023):720-31. PubMed ID: 4333397 [Abstract] [Full Text] [Related]
19. Permeability of rat and rabbit erythrocyte membranes for a series of amides. Gordiyenko OI, Kovalenko GV, Kovalenko IF, Kholodnyy VS, Linnik TP, Gordiyenko EO. Bioelectrochemistry; 2008 Aug 18; 73(2):141-4. PubMed ID: 18511354 [Abstract] [Full Text] [Related]
20. Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles. Nicolson GL. J Cell Biol; 1973 May 18; 57(2):373-87. PubMed ID: 4121289 [Abstract] [Full Text] [Related] Page: [Next] [New Search]