These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 451997

  • 1. Secretory activities of plasmatocytes and oenocytoids during the moulting cycle in an insect (Rhodnius).
    Wigglesworth VB.
    Tissue Cell; 1979; 11(1):69-78. PubMed ID: 451997
    [Abstract] [Full Text] [Related]

  • 2. Honeycomb structure in the lamina lucida of epidermal basement membrane during metamorphosis of Rana temporaria ornativentris.
    Osawa T, Feng XY, Marue H, Liao MY, Nozaka Y.
    J Morphol; 2002 Oct; 254(1):92-8. PubMed ID: 12219346
    [Abstract] [Full Text] [Related]

  • 3. Immunohistochemical study of basement membrane reconstruction by an epidermis-dermis recombination experiment using cultured chick embryonic skin: induction of tenascin.
    Akimoto Y, Obinata A, Endo H, Hirano H.
    J Histochem Cytochem; 1992 Aug; 40(8):1129-37. PubMed ID: 1377733
    [Abstract] [Full Text] [Related]

  • 4. Active muscle migration during insect metamorphosis.
    Williams GJ, Shivers RR, Caveney S.
    Tissue Cell; 1984 Aug; 16(3):411-32. PubMed ID: 6464004
    [Abstract] [Full Text] [Related]

  • 5. The fine structure of the ventral intersegmental abdominal muscles of the insect Rhodnius prolixus during the molting cycle. I. Muscle structure at molting.
    Toselli PA, Pepe FA.
    J Cell Biol; 1968 May; 37(2):445-61. PubMed ID: 5656401
    [Abstract] [Full Text] [Related]

  • 6. Basement membrane and human epidermal differentiation in vitro.
    Guo M, Grinnell F.
    J Invest Dermatol; 1989 Sep; 93(3):372-8. PubMed ID: 2475548
    [Abstract] [Full Text] [Related]

  • 7. The fine structure of the ventral intersegmental abdominal muscles of the insect Rhodnius prolixus during the molting cycle. II. Muscle changes in preparation for molting.
    Toselli PA, Pepe FA.
    J Cell Biol; 1968 May; 37(2):462-81. PubMed ID: 5656402
    [Abstract] [Full Text] [Related]

  • 8. The basement membrane of the insect and crustacean compound eye: definition, fine structure, and comparative morphology.
    Odselius R, Elofsson R.
    Cell Tissue Res; 1981 May; 216(1):205-14. PubMed ID: 7226205
    [Abstract] [Full Text] [Related]

  • 9. The source of lipids and polyphenols for the insect cuticle: The role of fat body, oenocytes and oenocytoids.
    Wigglesworth VB.
    Tissue Cell; 1988 May; 20(6):919-32. PubMed ID: 18620248
    [Abstract] [Full Text] [Related]

  • 10. Mouse mammary epithelial cells produce basement membrane and cell surface heparan sulfate proteoglycans containing distinct core proteins.
    Jalkanen M, Rapraeger A, Bernfield M.
    J Cell Biol; 1988 Mar; 106(3):953-62. PubMed ID: 2964452
    [Abstract] [Full Text] [Related]

  • 11. A comparative ultrastructural study of blood cells from nine insect orders.
    Brehélin M, Zachary D, Hoffmann JA.
    Cell Tissue Res; 1978 Dec 14; 195(1):45-57. PubMed ID: 737711
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. [Insect moulting activity of crude drugs and plants. (1)].
    Takemoto T, Ogawa S, Nishimoto N, Arihara S, Bue K.
    Yakugaku Zasshi; 1967 Nov 14; 87(11):1414-8. PubMed ID: 5627023
    [No Abstract] [Full Text] [Related]

  • 14. Differential lectin binding to cellular membranes in the epidermis of the newborn rat.
    Brabec RK, Peters BP, Bernstein IA, Gray RH, Goldstein IJ.
    Proc Natl Acad Sci U S A; 1980 Jan 14; 77(1):477-9. PubMed ID: 6928640
    [Abstract] [Full Text] [Related]

  • 15. Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone.
    Contard P, Bartel RL, Jacobs L, Perlish JS, MacDonald ED, Handler L, Cone D, Fleischmajer R.
    J Invest Dermatol; 1993 Jan 14; 100(1):35-9. PubMed ID: 8423391
    [Abstract] [Full Text] [Related]

  • 16. Study of basement membrane formation in dermal-epidermal recombinants in vitro.
    Chamson A, Germain N, Claudy A, Perier C, Frey J.
    Arch Dermatol Res; 1989 Jan 14; 281(4):267-72. PubMed ID: 2774658
    [Abstract] [Full Text] [Related]

  • 17. Studies of C3d,g in normal human epidermal basement membrane.
    Yancey KB, Basset-Séguin N.
    J Invest Dermatol; 1990 Jun 14; 94(6 Suppl):122S-127S. PubMed ID: 2191048
    [Abstract] [Full Text] [Related]

  • 18. Skin fibroblasts are the only source of nidogen during early basal lamina formation in vitro.
    Fleischmajer R, Schechter A, Bruns M, Perlish JS, Macdonald ED, Pan TC, Timpl R, Chu ML.
    J Invest Dermatol; 1995 Oct 14; 105(4):597-601. PubMed ID: 7561165
    [Abstract] [Full Text] [Related]

  • 19. Reconstitution of the epidermal basement membrane after enzymatic dermal-epidermal separation of embryonic mouse skin.
    Bard S, Sengel P.
    Arch Anat Microsc Morphol Exp; 1984 Oct 14; 73(4):239-57. PubMed ID: 6537737
    [Abstract] [Full Text] [Related]

  • 20. CELLULAR MEMBRANE FORMATION BY PLASMATOCYTES OF DIAPAUSING CECROPIA PUPAE.
    CLARK RM, HARVEY WR.
    J Insect Physiol; 1965 Feb 14; 11():161-75. PubMed ID: 14287221
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.