These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 454375
1. Modulation of Ca2+ efflux from heart mitochondria. Harris EJ. Biochem J; 1979 Mar 15; 178(3):673-80. PubMed ID: 454375 [Abstract] [Full Text] [Related]
2. Effects of adenine nucleotide translocase inhibitors on dinitrophenol-induced Ca2+ efflux from pig heart mitochondria. Peng CF, Straub KD, Kane JJ, Murphy ML, Wadkins CL. Biochim Biophys Acta; 1977 Nov 17; 462(2):403-13. PubMed ID: 588575 [Abstract] [Full Text] [Related]
3. Regulation of Ca2+ transport in brain mitochondria. II. The mechanism of the adenine nucleotides enhancement of Ca2+ uptake and retention. Rottenberg H, Marbach M. Biochim Biophys Acta; 1990 Mar 15; 1016(1):87-98. PubMed ID: 2310744 [Abstract] [Full Text] [Related]
4. Alloxan effects on mitochondria in vitro: correlation between endogenous adenine nucleotides and efflux of Ca2+. Boquist L. Biochem Int; 1984 Nov 15; 9(5):637-41. PubMed ID: 6525199 [Abstract] [Full Text] [Related]
5. Adenine nucleotides regulate Ca2+ transport in brain mitochondria. Rottenberg H, Marbach M. FEBS Lett; 1989 Apr 24; 247(2):483-6. PubMed ID: 2497035 [Abstract] [Full Text] [Related]
6. Correlated effluxes of adenine nucleotides, Mg2+ and Ca2+ induced in rat-liver mitochondria by external Ca2+ and phosphate. Zoccarato F, Rugolo M, Siliprandi D, Siliprandi N. Eur J Biochem; 1981 Feb 24; 114(2):195-9. PubMed ID: 7215353 [Abstract] [Full Text] [Related]
7. Ruthenium red-sensitive and -insensitive release of Ca2+ from uncoupled heart mitochondria. Jurkowitz MS, Geisbuhler T, Jung DW, Brierley GP. Arch Biochem Biophys; 1983 May 24; 223(1):120-8. PubMed ID: 6190435 [Abstract] [Full Text] [Related]
8. Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents and by thyroxine. The relationship to adenosine diphosphate retention and to mitochondrial permeability. Harris EJ, Al-Shaikhaly M, Baum H. Biochem J; 1979 Aug 15; 182(2):455-64. PubMed ID: 41519 [Abstract] [Full Text] [Related]
9. Adenine nucleotide transport in sonic submitochondrial particles. Kinetic properties and binding of specific inhibitors. Lauquin GJ, Villiers C, Michejda JW, Hryniewiecka LV, Vignais PV. Biochim Biophys Acta; 1977 May 11; 460(2):331-45. PubMed ID: 15594 [Abstract] [Full Text] [Related]
10. The losses of adenine nucleotide accompanying efflux of Ca2+ from heart, liver and kidney mitochondria. Harris EJ, Chen MS. Biochem Biophys Res Commun; 1982 Feb 26; 104(4):1264-70. PubMed ID: 7073741 [No Abstract] [Full Text] [Related]
17. Inhibition of 2,4-dinitrophenol-induced potassium efflux by adenine nucleotides in mitochondria. Baranova OV, Skarga YY, Negoda AE, Mironova GD. Biochemistry (Mosc); 2000 Feb 26; 65(2):218-22. PubMed ID: 10713551 [Abstract] [Full Text] [Related]
18. Phosphate-induced efflux of adenine nucleotides from rat-heart mitochondria: evaluation of the roles of the phosphate/hydroxyl exchanger and the dicarboxylate carrier. Wilson DE, Asimakis GK. Biochim Biophys Acta; 1987 Oct 07; 893(3):470-9. PubMed ID: 3651445 [Abstract] [Full Text] [Related]
19. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Denton RM, McCormack JG, Edgell NJ. Biochem J; 1980 Jul 15; 190(1):107-17. PubMed ID: 6160850 [Abstract] [Full Text] [Related]
20. Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria. Asimakis GK, Sordahl LA. Am J Physiol; 1981 Nov 15; 241(5):H672-8. PubMed ID: 6272586 [Abstract] [Full Text] [Related] Page: [Next] [New Search]