These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
208 related items for PubMed ID: 4550679
1. Glucose degradation, molar growth yields, and evidence for oxidative phosphorylation in Streptococcus agalactiae. Mickelson MN. J Bacteriol; 1972 Jan; 109(1):96-105. PubMed ID: 4550679 [Abstract] [Full Text] [Related]
3. Effect of uncoupling agents and respiratory inhibitors on the growth of Streptococcus agalactiae. Mickelson MN. J Bacteriol; 1974 Nov; 120(2):733-40. PubMed ID: 4142029 [Abstract] [Full Text] [Related]
4. Physiological characteristics of Streptococcus dysgalactiae and Streptococcus uberis and the effect of the lactoperoxidase complex on their growth in a chemically-defined medium and milk. Mickelson MN, Brown RW. J Dairy Sci; 1985 May; 68(5):1095-102. PubMed ID: 3916277 [Abstract] [Full Text] [Related]
5. Regulation of staphylococcal enterotoxin B: effect of anaerobic shock. Morse SA, Mah RA. Appl Microbiol; 1973 Apr; 25(4):553-7. PubMed ID: 4349246 [Abstract] [Full Text] [Related]
6. Roles of acetate and pyruvate in the metabolism of Streptococcus diacetilactis. Collins EB, Bruhn JC. J Bacteriol; 1970 Sep; 103(3):541-6. PubMed ID: 4919981 [Abstract] [Full Text] [Related]
7. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. de Vries W, Kapteijn WM, van der Beek EG, Stouthamer AH. J Gen Microbiol; 1970 Nov; 63(3):333-45. PubMed ID: 4930427 [No Abstract] [Full Text] [Related]
8. Molar growth yields as evidence for oxidative phosphorylation in Streptococcus faecalis strain 10Cl. Smalley AJ, Jahrling P, Van Demark PJ. J Bacteriol; 1968 Nov; 96(5):1595-600. PubMed ID: 4302299 [Abstract] [Full Text] [Related]
10. Oxidative phosphorylation in yeast. V. Phosphorylation efficiencies in growing cells determined from molar growth yields. Kormancíkov'A V, Kovác L, Vidová M. Biochim Biophys Acta; 1969 May; 180(1):9-17. PubMed ID: 5787273 [No Abstract] [Full Text] [Related]
11. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation. Bock AK, Schönheit P. J Bacteriol; 1995 Apr; 177(8):2002-7. PubMed ID: 7721692 [Abstract] [Full Text] [Related]
13. Glucose fermentation endproducts of Erwinia spp. and other enterobacteria. White JN, Starr MP. J Appl Bacteriol; 1971 Jun; 34(2):459-75. PubMed ID: 4329516 [No Abstract] [Full Text] [Related]
14. Regulation of lactate dehydrogenase and change of fermentation products in streptococci. Yamada T, Carlsson J. J Bacteriol; 1975 Oct; 124(1):55-61. PubMed ID: 1176435 [Abstract] [Full Text] [Related]
15. [Biochemical taxonomic studies of the genus Cellulomonas]. Stackebrandt E, Kandler O. Zentralbl Bakteriol Orig A; 1974 Oct; 228(1):128-35. PubMed ID: 4154655 [No Abstract] [Full Text] [Related]
16. Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum. Van Gent-Ruijters ML, DeVries W, Southamer AH. J Gen Microbiol; 1975 May; 88(1):36-48. PubMed ID: 168306 [Abstract] [Full Text] [Related]
17. Streptococcal utilization of lactic acid and its effect on pH. Hu G, Sandham HJ. Arch Oral Biol; 1972 Apr; 17(4):729-43. PubMed ID: 4339970 [No Abstract] [Full Text] [Related]
18. Changes in metabolism of the rumen bacterium Streptococcus bovis H13/1 resulting from alteration in dilution rate and glucose supply per unit time. Silley P, Armstrong DG. J Appl Bacteriol; 1984 Oct; 57(2):345-53. PubMed ID: 6501121 [Abstract] [Full Text] [Related]
19. Effect of aerobic and anaerobic atmosphere on acid production from sorbitol in suspensions of dental plaque and oral streptococci. Kalfas S, Birkhed D. Caries Res; 1986 Oct; 20(3):237-43. PubMed ID: 3456846 [No Abstract] [Full Text] [Related]