These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


444 related items for PubMed ID: 4576025

  • 1. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes.
    Haseltine WA, Block R.
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1564-8. PubMed ID: 4576025
    [Abstract] [Full Text] [Related]

  • 2. Stringent factor from Escherichia coli directs ribosomal binding and release of uncharged tRNA.
    Richter D.
    Proc Natl Acad Sci U S A; 1976 Mar; 73(3):707-11. PubMed ID: 768983
    [Abstract] [Full Text] [Related]

  • 3. Dissection of the mechanism for the stringent factor RelA.
    Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH.
    Mol Cell; 2002 Oct; 10(4):779-88. PubMed ID: 12419222
    [Abstract] [Full Text] [Related]

  • 4. Template-independent synthesis of guanosine tetra- and pentaphosphates on ribosomes.
    Belitsina NV, Klyachko EV, Shakulov RS.
    FEBS Lett; 1983 Oct 03; 162(1):39-42. PubMed ID: 6352335
    [Abstract] [Full Text] [Related]

  • 5. The stringent control mechanism. Binding of uncharged tRNA and stringent factor to Escherichia coli ribosomes.
    Richter D.
    Arch Biol Med Exp; 1976 Dec 03; 10(1-3):85-91. PubMed ID: 799921
    [Abstract] [Full Text] [Related]

  • 6. A new transfer RNA fragment reaction: Tp psi pCpGp bound to a ribosome-messenger RNA complex induces the synthesis of guanosine tetra- and pentaphosphates.
    Richter D, Erdmann VA, Sprinzl M.
    Proc Natl Acad Sci U S A; 1974 Aug 03; 71(8):3226-9. PubMed ID: 4606128
    [Abstract] [Full Text] [Related]

  • 7. Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5'-triphosphate,3'-diphosphate.
    Hamel E, Cashel M.
    Proc Natl Acad Sci U S A; 1973 Nov 03; 70(11):3250-4. PubMed ID: 4594040
    [Abstract] [Full Text] [Related]

  • 8. A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: an intermediate in initiation complex formation.
    Lockwood AH, Chakraborty PR, Maitra U.
    Proc Natl Acad Sci U S A; 1971 Dec 03; 68(12):3122-6. PubMed ID: 4943554
    [Abstract] [Full Text] [Related]

  • 9. Stimulation by ATP of protein initiation in a prokaryotic organism, B. stearothermophilus.
    Kay AC, Graffe M, Grunberg-Manago M.
    FEBS Lett; 1975 Oct 15; 58(1):112-8. PubMed ID: 773681
    [Abstract] [Full Text] [Related]

  • 10. Synthesis of a chemically reactive analog of the initiation codon: its reaction with ribosomes of Escherichia coli.
    Pongs O, Lanka E.
    Hoppe Seylers Z Physiol Chem; 1975 Apr 15; 356(4):449-58. PubMed ID: 1097317
    [Abstract] [Full Text] [Related]

  • 11. Ribosomal synthesis of guanosine tetra- and pentaphosphate with mRNAs of different chain length.
    Giesen M, Erdmann VA.
    FEBS Lett; 1977 Nov 01; 83(1):125-7. PubMed ID: 336399
    [No Abstract] [Full Text] [Related]

  • 12. The role of guanosine triphosphate hydrolysis in elongation factor Tu-promoted binding of aminoacyl transfer ribonucleic acid to ribosomes.
    Yokosawa H, Inoue-Yokosawa N, Arai KI, Kawakita M, Kaziro Y.
    J Biol Chem; 1973 Jan 10; 248(1):375-7. PubMed ID: 4571227
    [No Abstract] [Full Text] [Related]

  • 13. Peptide chain elongation; indications for the binding of an amino acid polymerization factor, guanosine 5'-triphosphate--aminoacyl transfer ribonucleic acid complex to the messenger-ribosome complex.
    Skoultchi A, Ono Y, Waterson J, Lengyel P.
    Biochemistry; 1970 Feb 03; 9(3):508-14. PubMed ID: 4906323
    [No Abstract] [Full Text] [Related]

  • 14. The binding of aminoacyl-transfer ribonucleic acid to wheat ribosomes.
    Allende JE, Tarragó A, Monasterio O, Litvak S, Gatica M, Ojeda JM, Matamala M.
    Biochem Soc Symp; 1973 Feb 03; (38):77-96. PubMed ID: 4807464
    [No Abstract] [Full Text] [Related]

  • 15. Ribosomal proteins of Escherichia coli that stimulate stringent-factor-mediated pyrophosphoryl transfer in vitro.
    Christiansen L, Neirhaus KH.
    Proc Natl Acad Sci U S A; 1976 Jun 03; 73(6):1839-43. PubMed ID: 778846
    [Abstract] [Full Text] [Related]

  • 16. Synthesis of pppGpp by ribosomes from an Escherichia coli spoT mutant and the metabolic relationship between pppGpp and ppGpp.
    Leung KL, Yamazaki H.
    Can J Biochem; 1977 Dec 03; 55(12):1207-12. PubMed ID: 340016
    [Abstract] [Full Text] [Related]

  • 17. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM.
    Proc Natl Acad Sci U S A; 1967 Jun 03; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract] [Full Text] [Related]

  • 18. Altered specificity of synthesis of guanosine tetraphosphate (ppGpp) and pentaphosphate (ppGpp) by salt-washed ribosomes.
    Ramagopal S.
    Biochem Biophys Res Commun; 1974 May 07; 58(1):268-71. PubMed ID: 4598443
    [No Abstract] [Full Text] [Related]

  • 19. Release of polypeptide chain initiation factor IF-2 during initiation complex formation.
    Lockwood AH, Sarkar P, Maitra U.
    Proc Natl Acad Sci U S A; 1972 Dec 07; 69(12):3602-5. PubMed ID: 4566451
    [Abstract] [Full Text] [Related]

  • 20. Synthesis of guanosine polyphosphates (pppGpp and ppGpp) and its regulation by aminoacyl-tRNA.
    Ogawa Y, Sy J.
    J Biochem; 1977 Oct 07; 82(4):947-53. PubMed ID: 336616
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.