These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 4581579

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Mechanisms of active transport in isolated bacterial membrane vesicles. X. Inactivation of D-lactate dehydrogenase and D-lactate dehydrogenase-coupled transport in Escherichia coli membrane vesicles by an acetylenic substrate.
    Walsh CT, Abeles RH, Kaback HR.
    J Biol Chem; 1972 Dec 25; 247(24):7858-63. PubMed ID: 4565667
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Transport in isolated bacterial membrane vesicles.
    Kaback HR.
    Methods Enzymol; 1974 Dec 25; 31():698-709. PubMed ID: 4609121
    [No Abstract] [Full Text] [Related]

  • 6. Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation.
    Prezioso G, Hong JS, Kerwar GK, Kaback HR.
    Arch Biochem Biophys; 1973 Feb 25; 154(2):575-82. PubMed ID: 4266260
    [No Abstract] [Full Text] [Related]

  • 7. Vinylglycolate resistance in Escherichia coli.
    Shaw L, Grau F, Kaback HR, Hong JS, Walsh C.
    J Bacteriol; 1975 Mar 25; 121(3):1047-55. PubMed ID: 1090585
    [Abstract] [Full Text] [Related]

  • 8. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR.
    Symp Soc Exp Biol; 1973 Mar 25; 27():145-74. PubMed ID: 4594375
    [No Abstract] [Full Text] [Related]

  • 9. The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coli membranes.
    Hochstadt-Ozer J.
    J Biol Chem; 1972 Apr 25; 247(8):2419-26. PubMed ID: 4336374
    [No Abstract] [Full Text] [Related]

  • 10. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli.
    Reeves JP, Hong JS, Kaback HR.
    Proc Natl Acad Sci U S A; 1973 Jul 25; 70(7):1917-21. PubMed ID: 4579004
    [Abstract] [Full Text] [Related]

  • 11. Bacterial transport.
    Boos W.
    Annu Rev Biochem; 1974 Jul 25; 43(0):123-46. PubMed ID: 4277372
    [No Abstract] [Full Text] [Related]

  • 12. The use of K+ diffusion gradients to support transport by Escherichia coli membrane vesicles.
    Hirata H.
    Methods Enzymol; 1979 Jul 25; 55():676-80. PubMed ID: 379504
    [No Abstract] [Full Text] [Related]

  • 13. Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli.
    Bhattacharyya P, Epstein W, Silver S.
    Proc Natl Acad Sci U S A; 1971 Jul 25; 68(7):1488-92. PubMed ID: 4934520
    [Abstract] [Full Text] [Related]

  • 14. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases.
    Futai M.
    Biochemistry; 1974 May 21; 13(11):2327-33. PubMed ID: 4598623
    [No Abstract] [Full Text] [Related]

  • 15. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM, Kaback HR.
    J Biol Chem; 1971 Sep 10; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract] [Full Text] [Related]

  • 16. The regulation of purine utilization in bacteria. II. Adenine phosphoribosyltransferase in isolated membrane preparations and its role in transport of adenine across the membrane.
    Hochstadt-Ozer J, Stadtman ER.
    J Biol Chem; 1971 Sep 10; 246(17):5304-11. PubMed ID: 4328694
    [No Abstract] [Full Text] [Related]

  • 17. Dehydrogenase activity involved in the uptake of glucose 6-phosphate by a bacterial membrane system.
    Dietz GW.
    J Biol Chem; 1972 Jul 25; 247(14):4561-5. PubMed ID: 4557845
    [No Abstract] [Full Text] [Related]

  • 18. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli.
    Kaback HR, Barnes EM.
    J Biol Chem; 1971 Sep 10; 246(17):5523-31. PubMed ID: 4941946
    [No Abstract] [Full Text] [Related]

  • 19. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system.
    Cordaro C.
    Annu Rev Genet; 1976 Sep 10; 10():341-59. PubMed ID: 189682
    [No Abstract] [Full Text] [Related]

  • 20. Membrane potential and active transport in membrane vesicles from Escherichia coli.
    Schuldiner S, Kaback HR.
    Biochemistry; 1975 Dec 16; 14(25):5451-61. PubMed ID: 172125
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.