These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 4581822

  • 21. Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams.
    Cole PE, Yang SK, Crothers DM.
    Biochemistry; 1972 Nov 07; 11(23):4358-68. PubMed ID: 4562590
    [No Abstract] [Full Text] [Related]

  • 22. Tritium exchange studies of transfer RNA in native and denaturated conformations.
    Webb PK, Fresco JR.
    J Mol Biol; 1973 Mar 05; 74(3):387-402. PubMed ID: 4571234
    [No Abstract] [Full Text] [Related]

  • 23. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe.
    Johnston PD, Redfield AG.
    Nucleic Acids Res; 1977 Oct 05; 4(10):3599-615. PubMed ID: 337239
    [Abstract] [Full Text] [Related]

  • 24. Conformational changes of transfer ribonucleic acid. Comparison of the early melting transition of two tyrosine-specific transfer ribonucleic acids.
    Yang SK, Crothers DM.
    Biochemistry; 1972 Nov 07; 11(23):4375-81. PubMed ID: 4562592
    [No Abstract] [Full Text] [Related]

  • 25. Codon-anticodon interaction in tRNAPhe. II. A nuclear magnetic resonance study of the binding of the codon UUC.
    Geerdes HA, Van Boom JH, Hilbers CW.
    J Mol Biol; 1980 Sep 15; 142(2):219-30. PubMed ID: 7003160
    [No Abstract] [Full Text] [Related]

  • 26. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P, Sprinzl M, Cramer F.
    Biochemistry; 1979 Jul 24; 18(15):3189-99. PubMed ID: 380644
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Investigation of the structure of native and denatured conformations of tRNALeu3 by high-resolution nuclear magnetic resonance.
    Kearns DR, Wong YP, Chang SH, Hawkins E.
    Biochemistry; 1974 Nov 05; 13(23):4736-46. PubMed ID: 4609465
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Hydrogen-bonded protons in the tertiary structure of yeast tRNAPhe in solution.
    Römer R, Varadi V.
    Proc Natl Acad Sci U S A; 1977 Apr 05; 74(4):1561-4. PubMed ID: 323858
    [Abstract] [Full Text] [Related]

  • 37. Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets.
    Grosjean H, Söll DG, Crothers DM.
    J Mol Biol; 1976 May 25; 103(3):499-519. PubMed ID: 781277
    [No Abstract] [Full Text] [Related]

  • 38. Conformational peculiarities of tRNAMetf from E. coli as revealed by fluorescent methods.
    Surovaya AN, Borissova OF.
    Mol Biol Rep; 1976 Jul 25; 2(6):487-95. PubMed ID: 785233
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Properties of tRNAPhe from Drosophila.
    White BN, Tener GM.
    Biochim Biophys Acta; 1973 Jun 23; 312(2):267-75. PubMed ID: 4198761
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.