These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 4587128

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The mechanism of action of inititation factor F1 from Escherichia coli.
    Benne R, Arentzen R, Voorma HO.
    Biochim Biophys Acta; 1972 May 10; 269(2):304-10. PubMed ID: 4555256
    [No Abstract] [Full Text] [Related]

  • 5. An investigation of the decoding of triplets adjacent to AUG during initiation.
    Golini F, Thach RE.
    Biochem Biophys Res Commun; 1972 Jun 28; 47(6):1314-21. PubMed ID: 4557169
    [No Abstract] [Full Text] [Related]

  • 6. Effect of thiostrepton on polypeptide chain initiation in Escherichia coli.
    Lockwood AH, Sarkar P, Maitra U, Brot N, Weissbach H.
    J Biol Chem; 1974 Sep 25; 249(18):5831-4. PubMed ID: 4606499
    [No Abstract] [Full Text] [Related]

  • 7. Studies on the role of guanosine triphosphate in polypeptide chain initiation in Escherichia coli.
    Dubnoff JS, Lockwood AH, Maitra U.
    J Biol Chem; 1972 May 10; 247(9):2884-94. PubMed ID: 4554363
    [No Abstract] [Full Text] [Related]

  • 8. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate.
    Hamel E, Koka M, Nakamoto T.
    J Biol Chem; 1972 Feb 10; 247(3):805-14. PubMed ID: 4333515
    [No Abstract] [Full Text] [Related]

  • 9. Characterization of the ribosome-dependent guanosine triphosphatase activity of polypeptide chain initiation factor IF 2.
    Dubnoff JS, Maitra U.
    J Biol Chem; 1972 May 10; 247(9):2876-83. PubMed ID: 4337107
    [No Abstract] [Full Text] [Related]

  • 10. Factor requirements for initiation complex formation with natural and synthetic messengers in Escherichia coli systems.
    Meier D, Lee-Huang S, Ochoa S.
    J Biol Chem; 1973 Dec 25; 248(24):8613-5. PubMed ID: 4587129
    [No Abstract] [Full Text] [Related]

  • 11. Peptide chain elongation. Role of the S 1 factor in the pathway from S 3 -guanosine diphosphate complex to aminoacyl transfer ribonucleic acid-S 3 -guanosine triphosphate complex.
    Beaud G, Lengyel P.
    Biochemistry; 1971 Dec 21; 10(26):4899-906. PubMed ID: 4944063
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effect of polypeptide chain length on dissociation of ribosomal complexes.
    Beller RJ, Lubsen NH.
    Biochemistry; 1972 Aug 15; 11(17):3271-6. PubMed ID: 4558708
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Studies on translocation of F-MET-tRNA and peptidyl-tRNA with antibiotics.
    Tanaka N, Lin YC, Okuyama A.
    Biochem Biophys Res Commun; 1971 Jul 16; 44(2):477-83. PubMed ID: 4946069
    [No Abstract] [Full Text] [Related]

  • 19. Role of GTP in the positioning of formylmethionyl-tRNAf on the E. coli ribosome.
    Kuechler E.
    Nat New Biol; 1971 Sep 15; 234(50):216-8. PubMed ID: 4942984
    [No Abstract] [Full Text] [Related]

  • 20. Elongation factor T-dependent GTP hydrolysis: dissociation from aminoacyl-tRNA binding.
    Ballesta JP.
    Methods Enzymol; 1974 Sep 15; 30():232-5. PubMed ID: 4368672
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.