These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 4592651

  • 21. [Phenylalanyl-tRNA synthetase (PRS) from Escherichia coli: binding of substrates and effectors].
    Kosakowski MH, Bartmann P, Hanke T, Holler E.
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1539. PubMed ID: 4346464
    [No Abstract] [Full Text] [Related]

  • 22. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli.
    Jacques Y, Blanquet S.
    Eur J Biochem; 1977 Oct 03; 79(2):433-41. PubMed ID: 336359
    [Abstract] [Full Text] [Related]

  • 23. The mechanism of reaction of methionyl-tRNA synthetase from Escherichia coli. Interaction of the enzyme with ligands of the amino-acid-activation reaction.
    Blanquet S, Fayat G, Waller JP, Iwatsubo M.
    Eur J Biochem; 1972 Jan 21; 24(3):461-9. PubMed ID: 4621706
    [No Abstract] [Full Text] [Related]

  • 24. Phenylalanyl-tRNA synthetase from E. coli: synergistic coupling between the sites for binding of L-phenylalanine and ATP.
    Holler E, Bartmann P, Hanke T, Kosakowski HM.
    Biochem Biophys Res Commun; 1973 Aug 21; 53(4):1205-12. PubMed ID: 4584021
    [No Abstract] [Full Text] [Related]

  • 25. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM, Jones DS.
    Biochem J; 1977 Aug 01; 165(2):367-73. PubMed ID: 336037
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Seryl transfer ribonucleic acid synthetase of Escherichia coli B, Enzyme-substrate interactions.
    Boeker EA, Cantoni GL.
    Biochemistry; 1973 Jun 19; 12(13):2384-9. PubMed ID: 4350949
    [No Abstract] [Full Text] [Related]

  • 29. Sulphur metabolism in Paracoccus denitrificans. Purification, properties and regulation of cysteinyl-and methionyl-tRNA synthetase.
    Burnell JN, Whatley FR.
    Biochim Biophys Acta; 1977 Mar 15; 481(1):266-78. PubMed ID: 14693
    [Abstract] [Full Text] [Related]

  • 30. The amino acid activation reaction catalyzed by methionyl-transfer rna synthetase: evidence for synergistic coupling between the sites for methionine adenosine and pyrophosphate.
    Blanquet S, Fayat G, Waller JP.
    J Mol Biol; 1975 May 05; 94(1):1-15. PubMed ID: 167177
    [No Abstract] [Full Text] [Related]

  • 31. Aminoacyl-tRNA synthetases: affinity labeling of the ATP binding site by 2', 3' -ribose oxidized ATP.
    Fayat G, Fromant M, Blanquet S.
    Proc Natl Acad Sci U S A; 1978 May 05; 75(5):2088-92. PubMed ID: 353807
    [Abstract] [Full Text] [Related]

  • 32. Kinetics of pyrophosphate-ATP exchange catalysed by L-tryptophan: tRNA ligase from Escherichia coli.
    Penzer GR, Plumbridge JA.
    Eur J Biochem; 1974 Jun 01; 45(1):291-5. PubMed ID: 4371652
    [No Abstract] [Full Text] [Related]

  • 33. Phenylalanyl transfer ribonucleic acid synthetase from Escherichia coli. Reaction parameters and order of substrate addition.
    Santi DV, Danenberg PV, Satterly P.
    Biochemistry; 1971 Dec 07; 10(25):4804-12. PubMed ID: 4334585
    [No Abstract] [Full Text] [Related]

  • 34. Methionyl-tRNA synthetase from Escherichia coli. Absence of interaction between the metal ion and the purine ring of ATP in the L-methionine activation site.
    Hyafil F, Bernassau JM.
    Eur J Biochem; 1978 Apr 17; 85(2):419-22. PubMed ID: 348471
    [Abstract] [Full Text] [Related]

  • 35. A stereochemical and positional isotope-exchange study of the mechanism of activation of methionine by methionyl-tRNA synthetase from Escherichia coli.
    Lowe G, Sproat BS, Tansley G.
    Eur J Biochem; 1983 Feb 01; 130(2):341-5. PubMed ID: 6337846
    [Abstract] [Full Text] [Related]

  • 36. [Proceedings: Reactive sites of Escherichia coli methional tRNA synthetase].
    Fayat G, Blanquet S, Waller JP.
    Arch Int Physiol Biochim; 1974 Oct 01; 82(4):766-7. PubMed ID: 4141438
    [No Abstract] [Full Text] [Related]

  • 37. Aminoacyl transfer RNA formation. II. Comparison of the mechanisms of aminoacylations stimulated by polyamines and Mg 2+ .
    Igarashi K, Matsuzaki K, Takeda Y.
    Biochim Biophys Acta; 1972 Apr 12; 262(4):476-87. PubMed ID: 4336270
    [No Abstract] [Full Text] [Related]

  • 38. The role of the fourth nucleotide from the 3'end in the yeast phenylalanyl transfer RNA synthetase recognition site: requirement for adenosine.
    Roe B, Dudock B.
    Biochem Biophys Res Commun; 1972 Oct 17; 49(2):399-406. PubMed ID: 4565493
    [No Abstract] [Full Text] [Related]

  • 39. Incorrect aminoacylations catalysed by E. coli valyl-tRNA synthetase.
    Giegé R, Kern D, Ebel JP.
    Biochimie; 1972 Oct 17; 54(10):1245-55. PubMed ID: 4265979
    [No Abstract] [Full Text] [Related]

  • 40. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase.
    Fourmy D, Meinnel T, Mechulam Y, Blanquet S.
    J Mol Biol; 1993 Jun 20; 231(4):1068-77. PubMed ID: 8515465
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.