These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Zn2+ and Co2+-alkaline phosphatases of E. coli. A comparative kinetic study. Lazdunski C, Lazdunski M. Eur J Biochem; 1969 Jan; 7(2):294-300. PubMed ID: 4885467 [No Abstract] [Full Text] [Related]
3. A proton relaxation rate study of the copper analog of Escherichia coli alkaline phosphatase. Zukin RS, Hollis DP. J Biol Chem; 1974 Jan 25; 249(2):656-8. PubMed ID: 4358560 [No Abstract] [Full Text] [Related]
4. A mutationally altered alkaline phosphatase from Escherichia coli. I. Formation of an active enzyme in vitro and phenotypic suppression in vivo. Halford SE, Lennette DA, Kelley PM, Schlesinger MJ. J Biol Chem; 1972 Apr 10; 247(7):2087-94. PubMed ID: 4552687 [No Abstract] [Full Text] [Related]
5. Kinetics of substrate hydrolysis by molecular variants of Escherichia coli alkaline phosphatase. Bloch W, Schlesinger MJ. J Biol Chem; 1974 Mar 25; 249(6):1760-8. PubMed ID: 4594238 [No Abstract] [Full Text] [Related]
6. Structural and activational zinc in Escherichia coli alkaline phosphatase. Trotman CN, Greenwood C. Biochem J; 1971 Jan 25; 121(1):12P. PubMed ID: 5000593 [No Abstract] [Full Text] [Related]
7. Metallocarboxypeptidases: a cadmium-carboxypeptidase B with peptidase activity. Zisapel N, Sokolovsky M. Biochem Biophys Res Commun; 1973 Aug 06; 53(3):722-9. PubMed ID: 4731950 [No Abstract] [Full Text] [Related]
8. Escherichia coli Co(II) alkaline phosphatase. Absorption, circular dichroism, and magnetic circular dichroism of the d-d electronic transitions. Taylor JS, Lau CY, Applebury ML, Coleman JE. J Biol Chem; 1973 Sep 10; 248(17):6216-20. PubMed ID: 4580054 [No Abstract] [Full Text] [Related]
9. Structure and mechanism of alkaline phosphatase. Coleman JE. Annu Rev Biophys Biomol Struct; 1992 Sep 10; 21():441-83. PubMed ID: 1525473 [Abstract] [Full Text] [Related]
10. Stimulation of alkaline phosphatase by analogs of inorganic pyrophosphate. Kelly SH, Sperow JW, Butler LG. Biochemistry; 1974 Aug 13; 13(17):3503-5. PubMed ID: 4367425 [No Abstract] [Full Text] [Related]
12. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase. Otvos JD, Armitage IM. Biochemistry; 1980 Aug 19; 19(17):4031-43. PubMed ID: 6996715 [Abstract] [Full Text] [Related]
13. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity. Lazdunski C, Petitclerc C, Chappelet D, Lazdunski M. Biochem Biophys Res Commun; 1969 Nov 20; 37(5):744-9. PubMed ID: 4900985 [No Abstract] [Full Text] [Related]
14. Structure-function relationships for some metalloalkaline phosphatases of E. coli. Lazdunski C, Petitclerc C, Lazdunski M. Eur J Biochem; 1969 Apr 20; 8(4):510-7. PubMed ID: 4978714 [No Abstract] [Full Text] [Related]
15. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR, Chen YW, Dekker EE. Arch Biochem Biophys; 1998 Oct 15; 358(2):211-21. PubMed ID: 9784233 [Abstract] [Full Text] [Related]