These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Lombardi FJ, Reeves JP, Short SA, Kaback HR. Ann N Y Acad Sci; 1974 Feb 18; 227():312-27. PubMed ID: 4363926 [No Abstract] [Full Text] [Related]
3. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport. Lombardi FJ, Reeves JP, Kaback HR. J Biol Chem; 1973 May 25; 248(10):3551-65. PubMed ID: 4573982 [No Abstract] [Full Text] [Related]
13. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. Hirata H, Altendorf K, Harold FM. J Biol Chem; 1974 May 10; 249(9):2939-45. PubMed ID: 4133356 [No Abstract] [Full Text] [Related]
14. Inhibition of K+ transport and metabolism of Escherichia coli by ethacrynic acid. Günther T, Dorn F, Haug M, Pellnitz W. Naunyn Schmiedebergs Arch Pharmacol; 1974 May 10; 282(1):97-107. PubMed ID: 4275892 [No Abstract] [Full Text] [Related]
16. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli. Altendorf K, Hirata H, Harold FM. J Biol Chem; 1975 Feb 25; 250(4):1405-12. PubMed ID: 1089658 [Abstract] [Full Text] [Related]
17. Valinomycin-induced cation transport in vesicles does not reflect the activity of K+ transport systems in Escherichia coli. Altendorf K, Epstein W, Löhmann A. J Bacteriol; 1986 Apr 25; 166(1):334-7. PubMed ID: 3514580 [Abstract] [Full Text] [Related]