These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 4616939

  • 1. Synthesis of branced-chain aminoacyl-transfer ribonucleid acid synthetases in a Salmonella typhimurium mutant with an altered biosynthetic L-threonine deaminase.
    Arfin SM, Miner T, Hatfield GW.
    J Bacteriol; 1974 Nov; 120(2):604-7. PubMed ID: 4616939
    [Abstract] [Full Text] [Related]

  • 2. Regulation of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli.
    McGinnis E, Williams LS.
    J Bacteriol; 1971 Oct; 108(1):254-62. PubMed ID: 4941558
    [Abstract] [Full Text] [Related]

  • 3. Evidence that the majority of leucine transfer ribonucleic acid is not involved in repression in Salmonella typhimurium.
    Freundlich M, Trela J, Peng W.
    J Bacteriol; 1971 Nov; 108(2):951-3. PubMed ID: 4942773
    [Abstract] [Full Text] [Related]

  • 4. Regulation of synthesis of the branched-chain amino acids and cognate aminoacyl-transfer ribonucleic acid synthetases of Escherichia coli: a common regulatory element.
    Jackson J, Williams LS, Umbarger HE.
    J Bacteriol; 1974 Dec; 120(3):1380-6. PubMed ID: 4612020
    [Abstract] [Full Text] [Related]

  • 5. Effect of cyclopentaneglycine on metabolism in Salmonella typhimurium.
    O'Neill JP, Freundlich M.
    J Bacteriol; 1972 Aug; 111(2):510-5. PubMed ID: 4559733
    [Abstract] [Full Text] [Related]

  • 6. Effect of isoleucine, valine, or leucine starvation on the potential for formation of the branched-chain amino acid biosynthetic enzymes.
    Wasmuth JJ, Umbarger HE.
    J Bacteriol; 1973 Nov; 116(2):548-61. PubMed ID: 4200849
    [Abstract] [Full Text] [Related]

  • 7. Regulation of branched-chain aminoacyl-transfer ribonucleic acid synthetases in an ilvDAC deletion strain of Escherichia coli K-12.
    Coleman W, Kline EL, Brown CS, Williams LS.
    J Bacteriol; 1975 Mar; 121(3):785-93. PubMed ID: 1090603
    [Abstract] [Full Text] [Related]

  • 8. Derepressed levels of the isoleucine-valine and leucine enzymes in his T 1504, a strain of Salmonella typhimurium with altered leucine transfer ribonucleic acid.
    Rizzino AA, Bresalier RS, Freundlich M.
    J Bacteriol; 1974 Feb; 117(2):449-55. PubMed ID: 4359646
    [Abstract] [Full Text] [Related]

  • 9. flrB, a regulatory locus controlling branched-chain amino acid biosynthesis in Salmonella typhimurium.
    Friedberg D, Mikulka TW, Jones J, Calvo JM.
    J Bacteriol; 1974 Jun; 118(3):942-51. PubMed ID: 4598011
    [Abstract] [Full Text] [Related]

  • 10. [Regulation of the biosynthesis of branched aminoacyl tRNA synthetases in Bacillus cereus T].
    Raimond J.
    Biochimie; 1980 Jun; 62(10):727-32. PubMed ID: 6778511
    [Abstract] [Full Text] [Related]

  • 11. Synthesis of the isoleucyl- and valyl-tRNA synthetases and the isoleucine-valine biosynthetic enzymes in a threonine deaminase regulatory mutant of Escherichia coli K-12.
    Singer PA, Levinthal M, Williams LS.
    J Mol Biol; 1984 May 05; 175(1):39-55. PubMed ID: 6374157
    [Abstract] [Full Text] [Related]

  • 12. Role for free isoleucine of glycyl-leucine in the repression of threonine deaminase in Escherichia coli.
    Wasmuth JJ, Umbarger HE.
    J Bacteriol; 1974 Jan 05; 117(1):29-39. PubMed ID: 4587610
    [Abstract] [Full Text] [Related]

  • 13. Derepression of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli.
    McGinnis E, Williams AC, Williams LS.
    J Bacteriol; 1974 Aug 05; 119(2):554-9. PubMed ID: 4604302
    [Abstract] [Full Text] [Related]

  • 14. Partial derepression of the isoleucine-valine enzymes during methionine starvation is Salmonella typhimurium.
    Rizzino A, Mastanduno M, Freundlich M.
    Biochim Biophys Acta; 1977 Mar 18; 475(2):267-75. PubMed ID: 321028
    [Abstract] [Full Text] [Related]

  • 15. Isoleucine auxotrophy due to feedback hypersensitivity of biosynthetic threonine deaminase.
    Springer W, Grimminger H, Lingens F.
    J Bacteriol; 1972 Oct 18; 112(1):259-63. PubMed ID: 4562397
    [Abstract] [Full Text] [Related]

  • 16. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase.
    Alexander RR, Calvo JM, Freundlich M.
    J Bacteriol; 1971 Apr 18; 106(1):213-20. PubMed ID: 4928008
    [Abstract] [Full Text] [Related]

  • 17. Threonine deaminase from Escherichia coli: feedback-hypersensitive enzyme from a genetic regulatory mutant.
    Calhoun DH.
    J Bacteriol; 1976 Apr 18; 126(1):56-63. PubMed ID: 770442
    [Abstract] [Full Text] [Related]

  • 18. An expanded two-state model accounts for homotropic cooperativity in biosynthetic threonine deaminase from Escherichia coli.
    Eisenstein E, Yu HD, Fisher KE, Iacuzio DA, Ducote KR, Schwarz FP.
    Biochemistry; 1995 Jul 25; 34(29):9403-12. PubMed ID: 7626610
    [Abstract] [Full Text] [Related]

  • 19. Salmonella typhimurium mutants with alternate requirements for vitamin B 6 or isoleucine.
    Guirard BM, Ames BN, Snell EE.
    J Bacteriol; 1971 Oct 25; 108(1):359-63. PubMed ID: 4941563
    [Abstract] [Full Text] [Related]

  • 20. Regulation of the tyrosine biosynthetic enzymes in Salmonella typhimurium: analysis of the involvement of tyrosyl-transfer ribonucleic acid and tyrosyl-transfer ribonucleic acid synthetase.
    Heinonen J, Artz SW, Zalkin H.
    J Bacteriol; 1972 Dec 25; 112(3):1254-63. PubMed ID: 4404819
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.